Files
azerothcore-wotlk-pbot/modules/dep/acelite/ace/Containers_T.cpp

1902 lines
46 KiB
C++

#ifndef ACE_CONTAINERS_T_CPP
#define ACE_CONTAINERS_T_CPP
#include "ace/Log_Category.h"
#include "ace/Malloc_Base.h"
#include "ace/OS_Memory.h"
#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */
#include "ace/Containers.h"
#if !defined (__ACE_INLINE__)
#include "ace/Containers_T.inl"
#endif /* __ACE_INLINE__ */
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
ACE_ALLOC_HOOK_DEFINE(ACE_Bounded_Stack)
template <class T> void
ACE_Bounded_Stack<T>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Bounded_Stack<T>::dump");
#endif /* ACE_HAS_DUMP */
}
template<class T>
ACE_Bounded_Stack<T>::ACE_Bounded_Stack (size_t size)
: size_ (size),
top_ (0)
{
ACE_NEW (this->stack_,
T[size]);
ACE_TRACE ("ACE_Bounded_Stack<T>::ACE_Bounded_Stack");
}
template<class T>
ACE_Bounded_Stack<T>::ACE_Bounded_Stack (const ACE_Bounded_Stack<T> &s)
: size_ (s.size_),
top_ (s.top_)
{
ACE_NEW (this->stack_,
T[s.size_]);
ACE_TRACE ("ACE_Bounded_Stack<T>::ACE_Bounded_Stack");
for (size_t i = 0; i < this->top_; i++)
this->stack_[i] = s.stack_[i];
}
template<class T> void
ACE_Bounded_Stack<T>::operator= (const ACE_Bounded_Stack<T> &s)
{
ACE_TRACE ("ACE_Bounded_Stack<T>::operator=");
if (&s != this)
{
if (this->size_ < s.size_)
{
delete [] this->stack_;
ACE_NEW (this->stack_,
T[s.size_]);
this->size_ = s.size_;
}
this->top_ = s.top_;
for (size_t i = 0; i < this->top_; i++)
this->stack_[i] = s.stack_[i];
}
}
template<class T>
ACE_Bounded_Stack<T>::~ACE_Bounded_Stack (void)
{
ACE_TRACE ("ACE_Bounded_Stack<T>::~ACE_Bounded_Stack");
delete [] this->stack_;
}
// ----------------------------------------
ACE_ALLOC_HOOK_DEFINE(ACE_Fixed_Stack)
template <class T, size_t ACE_SIZE> void
ACE_Fixed_Stack<T, ACE_SIZE>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Fixed_Stack<T, ACE_SIZE>::dump");
#endif /* ACE_HAS_DUMP */
}
template<class T, size_t ACE_SIZE>
ACE_Fixed_Stack<T, ACE_SIZE>::ACE_Fixed_Stack (void)
: size_ (ACE_SIZE),
top_ (0)
{
ACE_TRACE ("ACE_Fixed_Stack<T, ACE_SIZE>::ACE_Fixed_Stack");
}
template<class T, size_t ACE_SIZE>
ACE_Fixed_Stack<T, ACE_SIZE>::ACE_Fixed_Stack (const ACE_Fixed_Stack<T, ACE_SIZE> &s)
: size_ (s.size_),
top_ (s.top_)
{
ACE_TRACE ("ACE_Fixed_Stack<T, ACE_SIZE>::ACE_Fixed_Stack");
for (size_t i = 0; i < this->top_; i++)
this->stack_[i] = s.stack_[i];
}
template<class T, size_t ACE_SIZE> void
ACE_Fixed_Stack<T, ACE_SIZE>::operator= (const ACE_Fixed_Stack<T, ACE_SIZE> &s)
{
ACE_TRACE ("ACE_Fixed_Stack<T, ACE_SIZE>::operator=");
if (&s != this)
{
this->top_ = s.top_;
for (size_t i = 0; i < this->top_; i++)
this->stack_[i] = s.stack_[i];
}
}
template<class T, size_t ACE_SIZE>
ACE_Fixed_Stack<T, ACE_SIZE>::~ACE_Fixed_Stack (void)
{
ACE_TRACE ("ACE_Fixed_Stack<T, ACE_SIZE>::~ACE_Fixed_Stack");
}
//----------------------------------------
ACE_ALLOC_HOOK_DEFINE(ACE_Unbounded_Stack)
template <class T> void
ACE_Unbounded_Stack<T>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
// ACE_TRACE ("ACE_Unbounded_Stack<T>::dump");
#endif /* ACE_HAS_DUMP */
}
template<class T>
ACE_Unbounded_Stack<T>::ACE_Unbounded_Stack (ACE_Allocator *alloc)
: head_ (0),
cur_size_ (0),
allocator_ (alloc)
{
// ACE_TRACE ("ACE_Unbounded_Stack<T>::ACE_Unbounded_Stack");
if (this->allocator_ == 0)
this->allocator_ = ACE_Allocator::instance ();
ACE_NEW_MALLOC (this->head_,
(ACE_Node<T> *) this->allocator_->malloc (sizeof (ACE_Node<T>)),
ACE_Node<T>);
this->head_->next_ = this->head_;
}
template<class T> void
ACE_Unbounded_Stack<T>::delete_all_nodes (void)
{
// ACE_TRACE ("ACE_Unbounded_Stack<T>::delete_all_nodes");
while (this->is_empty () == 0)
{
ACE_Node<T> *temp = this->head_->next_;
this->head_->next_ = temp->next_;
ACE_DES_FREE_TEMPLATE (temp, this->allocator_->free,
ACE_Node, <T>);
}
this->cur_size_ = 0;
ACE_ASSERT (this->head_ == this->head_->next_
&& this->is_empty ());
}
template<class T> void
ACE_Unbounded_Stack<T>::copy_all_nodes (const ACE_Unbounded_Stack<T> &s)
{
// ACE_TRACE ("ACE_Unbounded_Stack<T>::copy_all_nodes");
ACE_ASSERT (this->head_ == this->head_->next_);
ACE_Node<T> *temp = this->head_;
for (ACE_Node<T> *s_temp = s.head_->next_;
s_temp != s.head_;
s_temp = s_temp->next_)
{
ACE_Node<T> *nptr = temp->next_;
ACE_NEW_MALLOC (temp->next_,
(ACE_Node<T> *) this->allocator_->malloc (sizeof (ACE_Node<T>)),
ACE_Node<T> (s_temp->item_, nptr));
temp = temp->next_;
}
this->cur_size_ = s.cur_size_;
}
template<class T>
ACE_Unbounded_Stack<T>::ACE_Unbounded_Stack (const ACE_Unbounded_Stack<T> &s)
: head_ (0),
cur_size_ (0),
allocator_ (s.allocator_)
{
if (this->allocator_ == 0)
this->allocator_ = ACE_Allocator::instance ();
ACE_NEW_MALLOC (this->head_,
(ACE_Node<T> *) this->allocator_->malloc (sizeof (ACE_Node<T>)),
ACE_Node<T>);
this->head_->next_ = this->head_;
// ACE_TRACE ("ACE_Unbounded_Stack<T>::ACE_Unbounded_Stack");
this->copy_all_nodes (s);
}
template<class T> void
ACE_Unbounded_Stack<T>::operator= (const ACE_Unbounded_Stack<T> &s)
{
// ACE_TRACE ("ACE_Unbounded_Stack<T>::operator=");
if (this != &s)
{
this->delete_all_nodes ();
this->copy_all_nodes (s);
}
}
template<class T>
ACE_Unbounded_Stack<T>::~ACE_Unbounded_Stack (void)
{
// ACE_TRACE ("ACE_Unbounded_Stack<T>::~ACE_Unbounded_Stack");
this->delete_all_nodes ();
ACE_DES_FREE_TEMPLATE (head_,
this->allocator_->free,
ACE_Node,
<T>);
}
template<class T> int
ACE_Unbounded_Stack<T>::push (const T &new_item)
{
// ACE_TRACE ("ACE_Unbounded_Stack<T>::push");
ACE_Node<T> *temp = 0;
ACE_NEW_MALLOC_RETURN (temp,
static_cast<ACE_Node<T> *> (this->allocator_->malloc (sizeof (ACE_Node<T>))),
ACE_Node<T> (new_item, this->head_->next_),
-1);
this->head_->next_ = temp;
++this->cur_size_;
return 0;
}
template<class T> int
ACE_Unbounded_Stack<T>::pop (T &item)
{
// ACE_TRACE ("ACE_Unbounded_Stack<T>::pop");
if (this->is_empty ())
return -1;
else
{
ACE_Node<T> *temp = this->head_->next_;
item = temp->item_;
this->head_->next_ = temp->next_;
ACE_DES_FREE_TEMPLATE (temp,
this->allocator_->free,
ACE_Node,
<T>);
--this->cur_size_;
return 0;
}
}
template <class T> int
ACE_Unbounded_Stack<T>::find (const T &item) const
{
// ACE_TRACE ("ACE_Unbounded_Stack<T>::find");
// Set <item> into the dummy node.
this->head_->item_ = item;
ACE_Node<T> *temp = this->head_->next_;
// Keep looping until we find the item.
while (!(temp->item_ == item))
temp = temp->next_;
// If we found the dummy node then it's not really there, otherwise,
// it is there.
return temp == this->head_ ? -1 : 0;
}
template <class T> int
ACE_Unbounded_Stack<T>::insert (const T &item)
{
// ACE_TRACE ("ACE_Unbounded_Stack<T>::insert");
if (this->find (item) == 0)
return 1;
else
return this->push (item);
}
template <class T> int
ACE_Unbounded_Stack<T>::remove (const T &item)
{
// ACE_TRACE ("ACE_Unbounded_Stack<T>::remove");
// Insert the item to be founded into the dummy node.
this->head_->item_ = item;
ACE_Node<T> *curr = this->head_;
while (!(curr->next_->item_ == item))
curr = curr->next_;
if (curr->next_ == this->head_)
return -1; // Item was not found.
else
{
ACE_Node<T> *temp = curr->next_;
// Skip over the node that we're deleting.
curr->next_ = temp->next_;
--this->cur_size_;
ACE_DES_FREE_TEMPLATE (temp,
this->allocator_->free,
ACE_Node,
<T>);
return 0;
}
}
//--------------------------------------------------
ACE_ALLOC_HOOK_DEFINE(ACE_Double_Linked_List_Iterator_Base)
template <class T>
ACE_Double_Linked_List_Iterator_Base<T>::ACE_Double_Linked_List_Iterator_Base (const ACE_Double_Linked_List<T> &dll)
: current_ (0), dllist_ (&dll)
{
// Do nothing
}
template <class T>
ACE_Double_Linked_List_Iterator_Base<T>::ACE_Double_Linked_List_Iterator_Base (const ACE_Double_Linked_List_Iterator_Base<T> &iter)
: current_ (iter.current_),
dllist_ (iter.dllist_)
{
// Do nothing
}
template <class T> T *
ACE_Double_Linked_List_Iterator_Base<T>::next (void) const
{
return this->not_done ();
}
template <class T> int
ACE_Double_Linked_List_Iterator_Base<T>::next (T *&ptr) const
{
ptr = this->not_done ();
return ptr ? 1 : 0;
}
template <class T> int
ACE_Double_Linked_List_Iterator_Base<T>::done (void) const
{
return this->not_done () ? 0 : 1;
}
template <class T> T &
ACE_Double_Linked_List_Iterator_Base<T>::operator* (void) const
{
return *(this->not_done ());
}
// @@ Is this a valid retasking? Make sure to check with Purify and
// whatnot that we're not leaking memory or doing any other screwing things.
template <class T> void
ACE_Double_Linked_List_Iterator_Base<T>::reset (ACE_Double_Linked_List<T> &dll)
{
current_ = 0;
dllist_ = &dll;
}
template <class T> int
ACE_Double_Linked_List_Iterator_Base<T>::go_head (void)
{
this->current_ = static_cast<T*> (dllist_->head_->next_);
return this->current_ ? 1 : 0;
}
template <class T> int
ACE_Double_Linked_List_Iterator_Base<T>::go_tail (void)
{
this->current_ = static_cast<T*> (dllist_->head_->prev_);
return this->current_ ? 1 : 0;
}
template <class T> T *
ACE_Double_Linked_List_Iterator_Base<T>::not_done (void) const
{
if (this->current_ != this->dllist_->head_)
return this->current_;
else
return 0;
}
template <class T> T *
ACE_Double_Linked_List_Iterator_Base<T>::do_advance (void)
{
if (this->not_done ())
{
this->current_ = static_cast<T*> (this->current_->next_);
return this->not_done ();
}
else
return 0;
}
template <class T> T *
ACE_Double_Linked_List_Iterator_Base<T>::do_retreat (void)
{
if (this->not_done ())
{
this->current_ = static_cast<T*> (this->current_->prev_);
return this->not_done ();
}
else
return 0;
}
template <class T> void
ACE_Double_Linked_List_Iterator_Base<T>::dump_i (void) const
{
ACELIB_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT ("current_ = %x"), this->current_));
ACELIB_DEBUG ((LM_DEBUG, ACE_END_DUMP));
}
//--------------------------------------------------
ACE_ALLOC_HOOK_DEFINE(ACE_Double_Linked_List_Iterator)
template <class T>
ACE_Double_Linked_List_Iterator<T>::ACE_Double_Linked_List_Iterator (const ACE_Double_Linked_List<T> &dll)
: ACE_Double_Linked_List_Iterator_Base <T> (dll)
{
this->current_ = static_cast<T*> (dll.head_->next_);
// Advance current_ out of the null area and onto the first item in
// the list
}
template <class T> void
ACE_Double_Linked_List_Iterator<T>::reset (ACE_Double_Linked_List<T> &dll)
{
this->ACE_Double_Linked_List_Iterator_Base <T>::reset (dll);
this->current_ = static_cast<T*> (dll.head_->next_);
// Advance current_ out of the null area and onto the first item in
// the list
}
template <class T> int
ACE_Double_Linked_List_Iterator<T>::first (void)
{
return this->go_head ();
}
template <class T> int
ACE_Double_Linked_List_Iterator<T>::advance (void)
{
return this->do_advance () ? 1 : 0;
}
template <class T> T*
ACE_Double_Linked_List_Iterator<T>::advance_and_remove (bool dont_remove)
{
T* item = 0;
if (dont_remove)
this->do_advance ();
else
{
item = this->next ();
this->do_advance ();
// It seems dangerous to remove nodes in an iterator, but so it goes...
ACE_Double_Linked_List<T> *dllist =
const_cast<ACE_Double_Linked_List<T> *> (this->dllist_);
dllist->remove (item);
}
return item;
}
template <class T> void
ACE_Double_Linked_List_Iterator<T>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
this->dump_i ();
#endif /* ACE_HAS_DUMP */
}
// Prefix advance.
template <class T>
ACE_Double_Linked_List_Iterator<T> &
ACE_Double_Linked_List_Iterator<T>::operator++ (void)
{
this->do_advance ();
return *this;
}
// Postfix advance.
template <class T>
ACE_Double_Linked_List_Iterator<T>
ACE_Double_Linked_List_Iterator<T>::operator++ (int)
{
ACE_Double_Linked_List_Iterator<T> retv (*this);
this->do_advance ();
return retv;
}
// Prefix reverse.
template <class T>
ACE_Double_Linked_List_Iterator<T> &
ACE_Double_Linked_List_Iterator<T>::operator-- (void)
{
this->do_retreat ();
return *this;
}
// Postfix reverse.
template <class T>
ACE_Double_Linked_List_Iterator<T>
ACE_Double_Linked_List_Iterator<T>::operator-- (int)
{
ACE_Double_Linked_List_Iterator<T> retv (*this);
this->do_retreat ();
return retv;
}
//--------------------------------------------------
ACE_ALLOC_HOOK_DEFINE(ACE_Double_Linked_List_Reverse_Iterator)
template <class T>
ACE_Double_Linked_List_Reverse_Iterator<T>::ACE_Double_Linked_List_Reverse_Iterator (ACE_Double_Linked_List<T> &dll)
: ACE_Double_Linked_List_Iterator_Base <T> (dll)
{
this->current_ = static_cast<T*> (dll.head_->prev_);
// Advance current_ out of the null area and onto the last item in
// the list
}
template <class T> void
ACE_Double_Linked_List_Reverse_Iterator<T>::reset (ACE_Double_Linked_List<T> &dll)
{
this->ACE_Double_Linked_List_Iterator_Base <T>::reset (dll);
this->current_ = static_cast<T*> (dll.head_->prev_);
// Advance current_ out of the null area and onto the last item in
// the list
}
template <class T> int
ACE_Double_Linked_List_Reverse_Iterator<T>::first (void)
{
return this->go_tail ();
}
template <class T> int
ACE_Double_Linked_List_Reverse_Iterator<T>::advance (void)
{
return this->do_retreat () ? 1 : 0;
}
template <class T> T*
ACE_Double_Linked_List_Reverse_Iterator<T>::advance_and_remove (bool dont_remove)
{
T* item = 0;
if (dont_remove)
{
this->do_retreat ();
}
else
{
item = this->next ();
this->do_retreat ();
// It seems dangerous to remove nodes in an iterator, but so it goes...
ACE_Double_Linked_List<T> *dllist =
const_cast<ACE_Double_Linked_List<T> *> (this->dllist_);
dllist->remove (item);
}
return item;
}
template <class T> void
ACE_Double_Linked_List_Reverse_Iterator<T>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
this->dump_i ();
#endif /* ACE_HAS_DUMP */
}
// Prefix advance.
template <class T>
ACE_Double_Linked_List_Reverse_Iterator<T> &
ACE_Double_Linked_List_Reverse_Iterator<T>::operator++ (void)
{
this->do_retreat ();
return *this;
}
// Postfix advance.
template <class T>
ACE_Double_Linked_List_Reverse_Iterator<T>
ACE_Double_Linked_List_Reverse_Iterator<T>::operator++ (int)
{
ACE_Double_Linked_List_Reverse_Iterator<T> retv (*this);
this->do_retreat ();
return retv;
}
// Prefix reverse.
template <class T>
ACE_Double_Linked_List_Reverse_Iterator<T> &
ACE_Double_Linked_List_Reverse_Iterator<T>::operator-- (void)
{
this->do_advance ();
return *this;
}
// Postfix reverse.
template <class T>
ACE_Double_Linked_List_Reverse_Iterator<T>
ACE_Double_Linked_List_Reverse_Iterator<T>::operator-- (int)
{
ACE_Double_Linked_List_Reverse_Iterator<T> retv (*this);
this->do_advance ();
return retv;
}
ACE_ALLOC_HOOK_DEFINE(ACE_Double_Linked_List)
template <class T>
ACE_Double_Linked_List<T>:: ACE_Double_Linked_List (ACE_Allocator *alloc)
: size_ (0), allocator_ (alloc)
{
if (this->allocator_ == 0)
this->allocator_ = ACE_Allocator::instance ();
ACE_NEW_MALLOC (this->head_,
(T *) this->allocator_->malloc (sizeof (T)),
T);
this->init_head ();
}
template <class T>
ACE_Double_Linked_List<T>::ACE_Double_Linked_List (const ACE_Double_Linked_List<T> &cx)
: allocator_ (cx.allocator_)
{
if (this->allocator_ == 0)
this->allocator_ = ACE_Allocator::instance ();
ACE_NEW_MALLOC (this->head_,
(T *) this->allocator_->malloc (sizeof (T)),
T);
this->init_head ();
this->copy_nodes (cx);
this->size_ = cx.size_;
}
template <class T> void
ACE_Double_Linked_List<T>::operator= (const ACE_Double_Linked_List<T> &cx)
{
if (this != &cx)
{
this->delete_nodes ();
this->copy_nodes (cx);
}
}
template <class T>
ACE_Double_Linked_List<T>::~ACE_Double_Linked_List (void)
{
this->delete_nodes ();
ACE_DES_FREE (head_,
this->allocator_->free,
T);
this->head_ = 0;
}
template <class T> int
ACE_Double_Linked_List<T>::is_empty (void) const
{
return this->size () ? 0 : 1;
}
template <class T> int
ACE_Double_Linked_List<T>::is_full (void) const
{
return 0; // We have no bound.
}
template <class T> T *
ACE_Double_Linked_List<T>::insert_tail (T *new_item)
{
// Insert it before <head_>, i.e., at tail.
this->insert_element (new_item, 1);
return new_item;
}
template <class T> T *
ACE_Double_Linked_List<T>::insert_head (T *new_item)
{
this->insert_element (new_item); // Insert it after <head_>, i.e., at head.
return new_item;
}
template <class T> T *
ACE_Double_Linked_List<T>::delete_head (void)
{
if (this->is_empty ())
return 0;
T *temp = static_cast<T *> (this->head_->next_);
// Detach it from the list.
this->remove_element (temp);
return temp;
}
template <class T> T *
ACE_Double_Linked_List<T>::delete_tail (void)
{
if (this->is_empty ())
return 0;
T *temp = static_cast <T *> (this->head_->prev_);
// Detach it from the list.
this->remove_element (temp);
return temp;
}
template <class T> void
ACE_Double_Linked_List<T>::reset (void)
{
this->delete_nodes ();
}
template <class T> int
ACE_Double_Linked_List<T>::get (T *&item, size_t slot)
{
ACE_Double_Linked_List_Iterator<T> iter (*this);
for (size_t i = 0;
i < slot && !iter.done ();
i++)
iter.advance ();
item = iter.next ();
return item ? 0 : -1;
}
template <class T> size_t
ACE_Double_Linked_List<T>::size (void) const
{
return this->size_;
}
template <class T> void
ACE_Double_Linked_List<T>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
// Dump the state of an object.
#endif /* ACE_HAS_DUMP */
}
template <class T> int
ACE_Double_Linked_List<T>::remove (T *n)
{
return this->remove_element (n);
}
template <class T> void
ACE_Double_Linked_List<T>::delete_nodes (void)
{
while (! this->is_empty ())
{
T * temp = static_cast<T*> (this->head_->next_);
this->remove_element (temp);
ACE_DES_FREE (temp,
this->allocator_->free,
T);
}
}
template <class T> void
ACE_Double_Linked_List<T>::copy_nodes (const ACE_Double_Linked_List<T> &c)
{
for (ACE_Double_Linked_List_Iterator<T> iter (c);
!iter.done ();
iter.advance ())
{
T* temp = 0;
ACE_NEW_MALLOC (temp,
(T *)this->allocator_->malloc (sizeof (T)),
T (*iter.next ()));
this->insert_tail (temp);
}
}
template <class T> void
ACE_Double_Linked_List<T>::init_head (void)
{
this->head_->next_ = this->head_;
this->head_->prev_ = this->head_;
}
template <class T> int
ACE_Double_Linked_List<T>::insert_element (T *new_item,
int before,
T *old_item)
{
if (old_item == 0)
old_item = this->head_;
if (before)
old_item = static_cast<T *> (old_item->prev_);
new_item->next_ = old_item->next_;
new_item->next_->prev_ = new_item;
new_item->prev_ = old_item;
old_item->next_ = new_item;
++this->size_;
return 0; // Well, what will cause errors here?
}
template <class T> int
ACE_Double_Linked_List<T>::remove_element (T *item)
{
// Notice that you have to ensure that item is an element of this
// list. We can't do much checking here.
if (item == this->head_ || item->next_ == 0
|| item->prev_ == 0 || this->size () == 0) // Can't remove head
return -1;
item->prev_->next_ = item->next_;
item->next_->prev_ = item->prev_;
item->next_ = item->prev_ = 0; // reset pointers to prevent double removal.
--this->size_;
return 0;
}
//--------------------------------------------------
ACE_ALLOC_HOOK_DEFINE(ACE_Fixed_Set)
template <class T, size_t ACE_SIZE> size_t
ACE_Fixed_Set<T, ACE_SIZE>::size (void) const
{
ACE_TRACE ("ACE_Fixed_Set<T, ACE_SIZE>::size");
return this->cur_size_;
}
template <class T, size_t ACE_SIZE> void
ACE_Fixed_Set<T, ACE_SIZE>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Fixed_Set<T, ACE_SIZE>::dump");
#endif /* ACE_HAS_DUMP */
}
template <class T, size_t ACE_SIZE>
ACE_Fixed_Set<T, ACE_SIZE>::~ACE_Fixed_Set (void)
{
ACE_TRACE ("ACE_Fixed_Set<T, ACE_SIZE>::~ACE_Fixed_Set");
this->cur_size_ = 0;
}
template <class T, size_t ACE_SIZE>
ACE_Fixed_Set<T, ACE_SIZE>::ACE_Fixed_Set (const ACE_Fixed_Set<T, ACE_SIZE> &fs)
: cur_size_ (fs.cur_size_)
{
ACE_TRACE ("ACE_Fixed_Set<T>::ACE_Fixed_Set");
for (size_t i = 0, j = 0; i < fs.max_size_ && j < this->cur_size_; ++i)
if (fs.search_structure_[i].is_free_ == 0)
this->search_structure_[j++] = fs.search_structure_[i];
}
template <class T, size_t ACE_SIZE> void
ACE_Fixed_Set<T, ACE_SIZE>::operator= (const ACE_Fixed_Set<T, ACE_SIZE> &fs)
{
ACE_TRACE ("ACE_Fixed_Set<T>::operator=");
if (this != &fs)
{
this->cur_size_ = fs.cur_size_;
for (size_t i = 0, j = 0; i < fs.max_size_ && j < this->cur_size_; ++i)
if (fs.search_structure_[i].is_free_ == 0)
this->search_structure_[j++] = fs.search_structure_[i];
}
}
template <class T, size_t ACE_SIZE>
ACE_Fixed_Set<T, ACE_SIZE>::ACE_Fixed_Set (void)
: cur_size_ (0),
max_size_ (ACE_SIZE)
{
ACE_TRACE ("ACE_Fixed_Set<T, ACE_SIZE>::ACE_Fixed_Set");
for (size_t i = 0; i < this->max_size_; i++)
this->search_structure_[i].is_free_ = 1;
}
template <class T, size_t ACE_SIZE> int
ACE_Fixed_Set<T, ACE_SIZE>::find (const T &item) const
{
ACE_TRACE ("ACE_Fixed_Set<T, ACE_SIZE>::find");
for (size_t i = 0, j = 0; i < this->max_size_ && j < this->cur_size_; ++i)
if (this->search_structure_[i].is_free_ == 0)
{
if (this->search_structure_[i].item_ == item)
return 0;
++j;
}
return -1;
}
template <class T, size_t ACE_SIZE> int
ACE_Fixed_Set<T, ACE_SIZE>::insert (const T &item)
{
ACE_TRACE ("ACE_Fixed_Set<T, ACE_SIZE>::insert");
ssize_t first_free = -1; // Keep track of first free slot.
size_t i;
for (i = 0;
i < this->max_size_ && first_free == -1;
++i)
// First, make sure we don't allow duplicates.
if (this->search_structure_[i].is_free_ == 0)
{
if (this->search_structure_[i].item_ == item)
return 1;
}
else
first_free = static_cast<ssize_t> (i);
// If we found a free spot let's reuse it.
if (first_free > -1)
{
this->search_structure_[first_free].item_ = item;
this->search_structure_[first_free].is_free_ = 0;
this->cur_size_++;
return 0;
}
else /* No more room! */
{
errno = ENOMEM;
return -1;
}
}
template <class T, size_t ACE_SIZE> int
ACE_Fixed_Set<T, ACE_SIZE>::remove (const T &item)
{
ACE_TRACE ("ACE_Fixed_Set<T, ACE_SIZE>::remove");
for (size_t i = 0, j = 0;
i < this->max_size_ && j < this->cur_size_;
++i)
if (this->search_structure_[i].is_free_ == 0)
{
if (this->search_structure_[i].item_ == item)
{
// Mark this entry as being free.
this->search_structure_[i].is_free_ = 1;
--this->cur_size_;
return 0;
}
else
++j;
}
return -1;
}
//--------------------------------------------------
ACE_ALLOC_HOOK_DEFINE(ACE_Fixed_Set_Iterator_Base)
template <class T, size_t ACE_SIZE> void
ACE_Fixed_Set_Iterator_Base<T, ACE_SIZE>::dump_i (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Fixed_Set_Iterator_Base<T, ACE_SIZE>::dump_i");
#endif /* ACE_HAS_DUMP */
}
template <class T, size_t ACE_SIZE>
ACE_Fixed_Set_Iterator_Base<T, ACE_SIZE>::ACE_Fixed_Set_Iterator_Base (ACE_Fixed_Set<T, ACE_SIZE> &s)
: s_ (s),
next_ (-1),
iterated_items_ (0)
{
ACE_TRACE ("ACE_Fixed_Set_Iterator_Base<T, ACE_SIZE>::ACE_Fixed_Set_Iterator_Base");
this->advance ();
}
template <class T, size_t ACE_SIZE> int
ACE_Fixed_Set_Iterator_Base<T, ACE_SIZE>::advance (void)
{
ACE_TRACE ("ACE_Fixed_Set_Iterator_Base<T, ACE_SIZE>::advance");
if (this->iterated_items_ < this->s_.cur_size_)
{
for (++this->next_;
static_cast<size_t> (this->next_) < this->s_.max_size_;
++this->next_)
if (this->s_.search_structure_[this->next_].is_free_ == 0)
{
++this->iterated_items_;
return 1;
}
}
else
++this->next_;
return 0;
}
template <class T, size_t ACE_SIZE> int
ACE_Fixed_Set_Iterator_Base<T, ACE_SIZE>::first (void)
{
ACE_TRACE ("ACE_Fixed_Set_Iterator_Base<T, ACE_SIZE>::first");
next_ = -1;
iterated_items_ = 0;
return this->advance ();
}
template <class T, size_t ACE_SIZE> int
ACE_Fixed_Set_Iterator_Base<T, ACE_SIZE>::done (void) const
{
ACE_TRACE ("ACE_Fixed_Set_Iterator_Base<T, ACE_SIZE>::done");
return ! (this->iterated_items_ < this->s_.cur_size_);
}
template <class T, size_t ACE_SIZE> int
ACE_Fixed_Set_Iterator_Base<T, ACE_SIZE>::next_i (T *&item)
{
ACE_TRACE ("ACE_Fixed_Set_Iterator_Base<T, ACE_SIZE>::next_i");
if (static_cast<size_t> (this->next_) < this->s_.max_size_)
do
{
if (this->s_.search_structure_[this->next_].is_free_ == 0)
{
item = &this->s_.search_structure_[this->next_].item_;
this->advance ();
return 1;
}
}
while (this->advance () == 1);
return 0;
}
//--------------------------------------------------
ACE_ALLOC_HOOK_DEFINE(ACE_Fixed_Set_Iterator)
template <class T, size_t ACE_SIZE> void
ACE_Fixed_Set_Iterator<T, ACE_SIZE>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
this->dump_i ();
#endif /* ACE_HAS_DUMP */
}
template <class T, size_t ACE_SIZE>
ACE_Fixed_Set_Iterator<T, ACE_SIZE>::ACE_Fixed_Set_Iterator (ACE_Fixed_Set<T, ACE_SIZE> &s)
: ACE_Fixed_Set_Iterator_Base<T, ACE_SIZE> (s)
{
ACE_TRACE ("ACE_Fixed_Set_Iterator<T, ACE_SIZE>::ACE_Fixed_Set_Iterator");
}
template <class T, size_t ACE_SIZE> int
ACE_Fixed_Set_Iterator<T, ACE_SIZE>::next (T *&item)
{
ACE_TRACE ("ACE_Fixed_Set_Iterator<T, ACE_SIZE>::next");
return this->next_i (item);
}
template <class T, size_t ACE_SIZE> int
ACE_Fixed_Set_Iterator<T, ACE_SIZE>::remove (T *&item)
{
ACE_TRACE ("ACE_Fixed_Set_Iterator<T, ACE_SIZE>::remove");
if (this->s_.search_structure_[this->next_].is_free_ == 0)
{
item = &this->s_.search_structure_[this->next_].item_;
this->s_.remove (*item);
--(this->iterated_items_);
return 1;
}
return 0;
}
template <class T, size_t ACE_SIZE> T&
ACE_Fixed_Set_Iterator<T, ACE_SIZE>::operator* (void)
{
T *retv = 0;
if (this->s_.search_structure_[this->next_].is_free_ == 0)
retv = &this->s_.search_structure_[this->next_].item_;
ACE_ASSERT (retv != 0);
return *retv;
}
//--------------------------------------------------
ACE_ALLOC_HOOK_DEFINE(ACE_Fixed_Set_Const_Iterator)
template <class T, size_t ACE_SIZE> void
ACE_Fixed_Set_Const_Iterator<T, ACE_SIZE>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
this->dump_i ();
#endif /* ACE_HAS_DUMP */
}
template <class T, size_t ACE_SIZE>
ACE_Fixed_Set_Const_Iterator<T, ACE_SIZE>::ACE_Fixed_Set_Const_Iterator (const ACE_Fixed_Set<T, ACE_SIZE> &s)
: ACE_Fixed_Set_Iterator_Base<T, ACE_SIZE> (s)
{
ACE_TRACE ("ACE_Fixed_Set_Const_Iterator<T, ACE_SIZE>::ACE_Fixed_Set_Const_Iterator");
}
template <class T, size_t ACE_SIZE> int
ACE_Fixed_Set_Const_Iterator<T, ACE_SIZE>::next (const T *&item)
{
ACE_TRACE ("ACE_Fixed_Set_Const_Iterator<T, ACE_SIZE>::next");
return this->next_i (item);
}
template <class T, size_t ACE_SIZE> const T&
ACE_Fixed_Set_Const_Iterator<T, ACE_SIZE>::operator* (void) const
{
const T *retv = 0;
if (this->s_.search_structure_[this->next_].is_free_ == 0)
retv = &this->s_.search_structure_[this->next_].item_;
ACE_ASSERT (retv != 0);
return *retv;
}
//--------------------------------------------------
ACE_ALLOC_HOOK_DEFINE(ACE_Bounded_Set)
template <class T> void
ACE_Bounded_Set<T>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Bounded_Set<T>::dump");
#endif /* ACE_HAS_DUMP */
}
template <class T>
ACE_Bounded_Set<T>::~ACE_Bounded_Set (void)
{
ACE_TRACE ("ACE_Bounded_Set<T>::~ACE_Bounded_Set");
delete [] this->search_structure_;
}
template <class T>
ACE_Bounded_Set<T>::ACE_Bounded_Set (void)
: cur_size_ (0),
max_size_ (static_cast<size_t> (ACE_Bounded_Set<T>::DEFAULT_SIZE))
{
ACE_TRACE ("ACE_Bounded_Set<T>::ACE_Bounded_Set");
ACE_NEW (this->search_structure_,
typename ACE_Bounded_Set<T>::Search_Structure[this->max_size_]);
for (size_t i = 0; i < this->max_size_; ++i)
this->search_structure_[i].is_free_ = 1;
}
template <class T> size_t
ACE_Bounded_Set<T>::size (void) const
{
ACE_TRACE ("ACE_Bounded_Set<T>::size");
return this->cur_size_;
}
template <class T>
ACE_Bounded_Set<T>::ACE_Bounded_Set (const ACE_Bounded_Set<T> &bs)
: cur_size_ (bs.cur_size_),
max_size_ (bs.max_size_)
{
ACE_TRACE ("ACE_Bounded_Set<T>::ACE_Bounded_Set");
ACE_NEW (this->search_structure_,
typename ACE_Bounded_Set<T>::Search_Structure[this->max_size_]);
for (size_t i = 0; i < this->cur_size_; i++)
this->search_structure_[i] = bs.search_structure_[i];
}
template <class T> void
ACE_Bounded_Set<T>::operator= (const ACE_Bounded_Set<T> &bs)
{
ACE_TRACE ("ACE_Bounded_Set<T>::operator=");
if (this != &bs)
{
if (this->max_size_ < bs.cur_size_)
{
delete [] this->search_structure_;
ACE_NEW (this->search_structure_,
typename ACE_Bounded_Set<T>::Search_Structure[bs.cur_size_]);
this->max_size_ = bs.cur_size_;
}
this->cur_size_ = bs.cur_size_;
for (size_t i = 0; i < this->cur_size_; i++)
this->search_structure_[i] = bs.search_structure_[i];
}
}
template <class T>
ACE_Bounded_Set<T>::ACE_Bounded_Set (size_t size)
: cur_size_ (0),
max_size_ (size)
{
ACE_TRACE ("ACE_Bounded_Set<T>::ACE_Bounded_Set");
ACE_NEW (this->search_structure_,
typename ACE_Bounded_Set<T>::Search_Structure[size]);
for (size_t i = 0; i < this->max_size_; i++)
this->search_structure_[i].is_free_ = 1;
}
template <class T> int
ACE_Bounded_Set<T>::find (const T &item) const
{
ACE_TRACE ("ACE_Bounded_Set<T>::find");
for (size_t i = 0; i < this->cur_size_; i++)
if (this->search_structure_[i].item_ == item
&& this->search_structure_[i].is_free_ == 0)
return 0;
return -1;
}
template <class T> int
ACE_Bounded_Set<T>::insert (const T &item)
{
ACE_TRACE ("ACE_Bounded_Set<T>::insert");
int first_free = -1; // Keep track of first free slot.
size_t i;
for (i = 0; i < this->cur_size_; i++)
// First, make sure we don't allow duplicates.
if (this->search_structure_[i].item_ == item
&& this->search_structure_[i].is_free_ == 0)
return 1;
else if (this->search_structure_[i].is_free_ && first_free == -1)
first_free = static_cast<int> (i);
if (first_free > -1) // If we found a free spot let's reuse it.
{
this->search_structure_[first_free].item_ = item;
this->search_structure_[first_free].is_free_ = 0;
return 0;
}
else if (i < this->max_size_) // Insert at the end of the active portion.
{
this->search_structure_[i].item_ = item;
this->search_structure_[i].is_free_ = 0;
this->cur_size_++;
return 0;
}
else /* No more room! */
{
errno = ENOMEM;
return -1;
}
}
template <class T> int
ACE_Bounded_Set<T>::remove (const T &item)
{
ACE_TRACE ("ACE_Bounded_Set<T>::remove");
for (size_t i = 0; i < this->cur_size_; i++)
if (this->search_structure_[i].item_ == item)
{
// Mark this entry as being free.
this->search_structure_[i].is_free_ = 1;
// If we just unbound the highest entry, then we need to
// figure out where the next highest active entry is.
if (i + 1 == this->cur_size_)
{
while (i > 0 && this->search_structure_[--i].is_free_)
continue;
if (i == 0 && this->search_structure_[i].is_free_)
this->cur_size_ = 0;
else
this->cur_size_ = i + 1;
}
return 0;
}
return -1;
}
ACE_ALLOC_HOOK_DEFINE(ACE_Bounded_Set_Iterator)
template <class T> void
ACE_Bounded_Set_Iterator<T>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Bounded_Set_Iterator<T>::dump");
#endif /* ACE_HAS_DUMP */
}
template <class T>
ACE_Bounded_Set_Iterator<T>::ACE_Bounded_Set_Iterator (ACE_Bounded_Set<T> &s)
: s_ (s),
next_ (-1)
{
ACE_TRACE ("ACE_Bounded_Set_Iterator<T>::ACE_Bounded_Set_Iterator");
this->advance ();
}
template <class T> int
ACE_Bounded_Set_Iterator<T>::advance (void)
{
ACE_TRACE ("ACE_Bounded_Set_Iterator<T>::advance");
for (++this->next_;
static_cast<size_t> (this->next_) < this->s_.cur_size_
&& this->s_.search_structure_[this->next_].is_free_;
++this->next_)
continue;
return static_cast<size_t> (this->next_) < this->s_.cur_size_;
}
template <class T> int
ACE_Bounded_Set_Iterator<T>::first (void)
{
ACE_TRACE ("ACE_Bounded_Set_Iterator<T>::first");
next_ = -1;
return this->advance ();
}
template <class T> int
ACE_Bounded_Set_Iterator<T>::done (void) const
{
ACE_TRACE ("ACE_Bounded_Set_Iterator<T>::done");
return static_cast<ACE_CAST_CONST size_t> (this->next_) >=
this->s_.cur_size_;
}
template <class T> int
ACE_Bounded_Set_Iterator<T>::next (T *&item)
{
ACE_TRACE ("ACE_Bounded_Set_Iterator<T>::next");
if (static_cast<size_t> (this->next_) < this->s_.cur_size_)
{
item = &this->s_.search_structure_[this->next_].item_;
return 1;
}
else
return 0;
}
ACE_ALLOC_HOOK_DEFINE(ACE_DNode)
template <class T>
ACE_DNode<T>::ACE_DNode (const T &i, ACE_DNode<T> *n, ACE_DNode<T> *p)
: next_ (n), prev_ (p), item_ (i)
{
}
template <class T>
ACE_DNode<T>::~ACE_DNode (void)
{
}
// ****************************************************************
template <class T> void
ACE_Unbounded_Stack_Iterator<T>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
// ACE_TRACE ("ACE_Unbounded_Stack_Iterator<T>::dump");
#endif /* ACE_HAS_DUMP */
}
template <class T>
ACE_Unbounded_Stack_Iterator<T>::ACE_Unbounded_Stack_Iterator (ACE_Unbounded_Stack<T> &q)
: current_ (q.head_->next_),
stack_ (q)
{
// ACE_TRACE ("ACE_Unbounded_Stack_Iterator<T>::ACE_Unbounded_Stack_Iterator");
}
template <class T> int
ACE_Unbounded_Stack_Iterator<T>::advance (void)
{
// ACE_TRACE ("ACE_Unbounded_Stack_Iterator<T>::advance");
this->current_ = this->current_->next_;
return this->current_ != this->stack_.head_;
}
template <class T> int
ACE_Unbounded_Stack_Iterator<T>::first (void)
{
// ACE_TRACE ("ACE_Unbounded_Stack_Iterator<T>::first");
this->current_ = this->stack_.head_->next_;
return this->current_ != this->stack_.head_;
}
template <class T> int
ACE_Unbounded_Stack_Iterator<T>::done (void) const
{
ACE_TRACE ("ACE_Unbounded_Stack_Iterator<T>::done");
return this->current_ == this->stack_.head_;
}
template <class T> int
ACE_Unbounded_Stack_Iterator<T>::next (T *&item)
{
// ACE_TRACE ("ACE_Unbounded_Stack_Iterator<T>::next");
if (this->current_ == this->stack_.head_)
return 0;
else
{
item = &this->current_->item_;
return 1;
}
}
ACE_ALLOC_HOOK_DEFINE(ACE_Ordered_MultiSet)
template <class T>
ACE_Ordered_MultiSet<T>::ACE_Ordered_MultiSet (ACE_Allocator *alloc)
: head_ (0)
, tail_ (0)
, cur_size_ (0)
, allocator_ (alloc)
{
// ACE_TRACE ("ACE_Ordered_MultiSet<T>::ACE_Ordered_MultiSet");
if (this->allocator_ == 0)
this->allocator_ = ACE_Allocator::instance ();
}
template <class T>
ACE_Ordered_MultiSet<T>::ACE_Ordered_MultiSet (const ACE_Ordered_MultiSet<T> &us)
: head_ (0)
, tail_ (0)
, cur_size_ (0)
, allocator_ (us.allocator_)
{
ACE_TRACE ("ACE_Ordered_MultiSet<T>::ACE_Ordered_MultiSet");
if (this->allocator_ == 0)
this->allocator_ = ACE_Allocator::instance ();
this->copy_nodes (us);
}
template <class T>
ACE_Ordered_MultiSet<T>::~ACE_Ordered_MultiSet (void)
{
// ACE_TRACE ("ACE_Ordered_MultiSet<T>::~ACE_Ordered_MultiSet");
this->delete_nodes ();
}
template <class T> void
ACE_Ordered_MultiSet<T>::operator= (const ACE_Ordered_MultiSet<T> &us)
{
ACE_TRACE ("ACE_Ordered_MultiSet<T>::operator=");
if (this != &us)
{
this->delete_nodes ();
this->copy_nodes (us);
}
}
template <class T> int
ACE_Ordered_MultiSet<T>::insert (const T &item)
{
// ACE_TRACE ("ACE_Ordered_MultiSet<T>::insert");
return this->insert_from (item, this->head_, 0);
}
template <class T> int
ACE_Ordered_MultiSet<T>::insert (const T &new_item,
ITERATOR &iter)
{
// ACE_TRACE ("ACE_Ordered_MultiSet<T>::insert using iterator");
return this->insert_from (new_item, iter.current_, &iter.current_);
}
template <class T> int
ACE_Ordered_MultiSet<T>::remove (const T &item)
{
// ACE_TRACE ("ACE_Ordered_MultiSet<T>::remove");
ACE_DNode<T> *node = 0;
int result = locate (item, 0, node);
// if we found the node, remove from list and free it
if (node && (result == 0))
{
if (node->prev_)
node->prev_->next_ = node->next_;
else
head_ = node->next_;
if (node->next_)
node->next_->prev_ = node->prev_;
else
tail_ = node->prev_;
--this->cur_size_;
ACE_DES_FREE_TEMPLATE (node,
this->allocator_->free,
ACE_DNode,
<T>);
return 0;
}
return -1;
}
template <class T> int
ACE_Ordered_MultiSet<T>::find (const T &item,
ITERATOR &iter) const
{
// search an occurrence of item, using iterator's current position as a hint
ACE_DNode<T> *node = iter.current_;
int const result = locate (item, node, node);
// if we found the node, update the iterator and indicate success
if (node && (result == 0))
{
iter.current_ = node;
return 0;
}
return -1;
}
template <class T> void
ACE_Ordered_MultiSet<T>::reset (void)
{
ACE_TRACE ("reset");
this->delete_nodes ();
}
template <class T> void
ACE_Ordered_MultiSet<T>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
// ACE_TRACE ("ACE_Ordered_MultiSet<T>::dump");
//
// ACELIB_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
// ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT ("\nhead_ = %u"), this->head_));
// ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT ("\nhead_->next_ = %u"), this->head_->next_));
// ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT ("\ncur_size_ = %d\n"), this->cur_size_));
//
// T *item = 0;
// size_t count = 1;
//
// for (ACE_Ordered_MultiSet_Iterator<T> iter (*(ACE_Ordered_MultiSet<T> *) this);
// iter.next (item) != 0;
// iter.advance ())
// ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT ("count = %d\n"), count++));
//
// ACELIB_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
template <class T> int
ACE_Ordered_MultiSet<T>::insert_from (const T &item, ACE_DNode<T> *position,
ACE_DNode<T> **new_position)
{
// ACE_TRACE ("ACE_Ordered_MultiSet<T>::insert_from");
// create a new node
ACE_DNode<T> *temp = 0;
ACE_NEW_MALLOC_RETURN (temp,
static_cast<ACE_DNode<T>*> (this->allocator_->malloc (sizeof (ACE_DNode<T>))),
ACE_DNode<T> (item),
-1);
// obtain approximate location of the node
int result = locate (item, position, position);
// if there are nodes in the multiset
if (position)
{
switch (result)
{
// insert after the approximate position
case -1:
// if there is a following node
if (position->next_)
{
// link up with the following node
position->next_->prev_ = temp;
temp->next_ = position->next_;
}
else
// appending to the end of the set
tail_ = temp;
// link up with the preceeding node
temp->prev_ = position;
position->next_ = temp;
break;
// insert before the position
case 0:
case 1:
// if there is a preceeding node
if (position->prev_)
{
// link up with the preceeding node
position->prev_->next_ = temp;
temp->prev_ = position->prev_;
}
else
// prepending to the start of the set
head_ = temp;
// link up with the preceeding node
temp->next_ = position;
position->prev_ = temp;
break;
default:
return -1;
}
}
else
{
// point the head and tail to the new node.
this->head_ = temp;
this->tail_ = temp;
}
++this->cur_size_;
if (new_position)
*new_position = temp;
return 0;
}
template <class T> int
ACE_Ordered_MultiSet<T>::locate (const T &item, ACE_DNode<T> *start_position,
ACE_DNode<T> *&new_position) const
{
if (! start_position)
start_position = this->head_;
// If starting before the item, move forward until at or just before
// item.
while (start_position && start_position->item_ < item &&
start_position->next_)
start_position = start_position->next_;
// If starting after the item, move back until at or just after item
while (start_position && item < start_position->item_ &&
start_position->prev_)
start_position = start_position->prev_;
// Save the (approximate) location in the passed pointer.
new_position = start_position;
// Show the location is after (1), before (-1) , or at (0) the item
if (!new_position)
return 1;
else if (item < new_position->item_)
return 1;
else if (new_position->item_ < item)
return -1;
else
return 0;
}
// Looks for first occurrence of <item> in the ordered set, using the
// passed starting position as a hint: if there is such an instance,
// it updates the new_position pointer to point to one such node and
// returns 0; if there is no such node, then if there is a node before
// where the item would have been, it updates the new_position pointer
// to point to this node and returns -1; if there is no such node,
// then if there is a node after where the item would have been, it
// updates the new_position pointer to point to this node (or 0 if
// there is no such node) and returns 1;
template <class T> void
ACE_Ordered_MultiSet<T>::copy_nodes (const ACE_Ordered_MultiSet<T> &us)
{
ACE_DNode<T> *insertion_point = this->head_;
for (ACE_DNode<T> *curr = us.head_;
curr != 0;
curr = curr->next_)
this->insert_from (curr->item_, insertion_point, &insertion_point);
}
template <class T> void
ACE_Ordered_MultiSet<T>::delete_nodes (void)
{
// iterate through list, deleting nodes
for (ACE_DNode<T> *curr = this->head_;
curr != 0;
)
{
ACE_DNode<T> *temp = curr;
curr = curr->next_;
ACE_DES_FREE_TEMPLATE (temp,
this->allocator_->free,
ACE_DNode,
<T>);
}
this->head_ = 0;
this->tail_ = 0;
this->cur_size_ = 0;
}
ACE_ALLOC_HOOK_DEFINE(ACE_Ordered_MultiSet_Iterator)
template <class T>
ACE_Ordered_MultiSet_Iterator<T>::ACE_Ordered_MultiSet_Iterator (ACE_Ordered_MultiSet<T> &s)
: current_ (s.head_),
set_ (s)
{
// ACE_TRACE ("ACE_Ordered_MultiSet_Iterator<T>::ACE_Ordered_MultiSet_Iterator");
}
template <class T> int
ACE_Ordered_MultiSet_Iterator<T>::next (T *&item) const
{
// ACE_TRACE ("ACE_Ordered_MultiSet_Iterator<T>::next");
if (this->current_)
{
item = &this->current_->item_;
return 1;
}
return 0;
}
template <class T> T&
ACE_Ordered_MultiSet_Iterator<T>::operator* (void)
{
//ACE_TRACE ("ACE_Ordered_MultiSet_Iterator<T>::operator*");
T *retv = 0;
int const result = this->next (retv);
ACE_ASSERT (result != 0);
ACE_UNUSED_ARG (result);
return *retv;
}
ACE_ALLOC_HOOK_DEFINE (ACE_DLList_Node)
template <class T> T *
ACE_DLList<T>::insert_tail (T *new_item)
{
ACE_DLList_Node *temp1 = 0;
ACE_NEW_MALLOC_RETURN (temp1,
static_cast<ACE_DLList_Node *> (this->allocator_->malloc (sizeof (ACE_DLList_Node))),
ACE_DLList_Node (new_item),
0);
ACE_DLList_Node *temp2 = ACE_DLList_Base::insert_tail (temp1);
return (T *) (temp2 ? temp2->item_ : 0);
}
template <class T> T *
ACE_DLList<T>::insert_head (T *new_item)
{
ACE_DLList_Node *temp1 = 0;
ACE_NEW_MALLOC_RETURN (temp1,
(ACE_DLList_Node *) this->allocator_->malloc (sizeof (ACE_DLList_Node)),
ACE_DLList_Node (new_item), 0);
ACE_DLList_Node *temp2 = ACE_DLList_Base::insert_head (temp1);
return (T *) (temp2 ? temp2->item_ : 0);
}
template <class T> T *
ACE_DLList<T>::delete_head (void)
{
ACE_DLList_Node *temp1 = ACE_DLList_Base::delete_head ();
T *temp2 = (T *) (temp1 ? temp1->item_ : 0);
ACE_DES_FREE (temp1,
this->allocator_->free,
ACE_DLList_Node);
return temp2;
}
template <class T> T *
ACE_DLList<T>::delete_tail (void)
{
ACE_DLList_Node *temp1 = ACE_DLList_Base::delete_tail ();
T *temp2 = (T *) (temp1 ? temp1->item_ : 0);
ACE_DES_FREE (temp1,
this->allocator_->free,
ACE_DLList_Node);
return temp2;
}
// ****************************************************************
// Compare this array with <s> for equality.
template <class T> bool
ACE_Array<T>::operator== (const ACE_Array<T> &s) const
{
if (this == &s)
return true;
else if (this->size () != s.size ())
return false;
const size_t len = s.size ();
for (size_t slot = 0; slot < len; ++slot)
if ((*this)[slot] != s[slot])
return false;
return true;
}
// ****************************************************************
ACE_END_VERSIONED_NAMESPACE_DECL
#endif /* ACE_CONTAINERS_T_CPP */