Files
azerothcore-wotlk-pbot/modules/dep/acelite/ace/Malloc_T.h

891 lines
30 KiB
C++

// -*- C++ -*-
//==========================================================================
/**
* @file Malloc_T.h
*
* @author Douglas C. Schmidt <schmidt@cs.wustl.edu> and
* Irfan Pyarali <irfan@cs.wustl.edu>
*/
//==========================================================================
#ifndef ACE_MALLOC_T_H
#define ACE_MALLOC_T_H
#include /**/ "ace/pre.h"
#include "ace/Malloc.h" /* Need ACE_Control_Block */
#include "ace/Malloc_Base.h" /* Need ACE_Allocator */
#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */
#include "ace/Malloc_Allocator.h"
#include "ace/Free_List.h"
#include "ace/Guard_T.h"
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
/**
* @class ACE_Cached_Mem_Pool_Node
*
* @brief ACE_Cached_Mem_Pool_Node keeps unused memory within a free
* list.
*
* The length of a piece of unused memory must be greater than
* sizeof (void*). This makes sense because we'll waste even
* more memory if we keep them in a separate data structure.
* This class should really be placed within the ACE_Cached_Allocator
* class but this can't be done due to C++ compiler portability problems.
*/
template <class T>
class ACE_Cached_Mem_Pool_Node
{
public:
/// Return the address of free memory.
T *addr (void);
/// Get the next ACE_Cached_Mem_Pool_Node in a list.
ACE_Cached_Mem_Pool_Node<T> *get_next (void);
/// Set the next ACE_Cached_Mem_Pool_Node.
void set_next (ACE_Cached_Mem_Pool_Node<T> *ptr);
private:
/**
* Since memory is not used when placed in a free list,
* we can use it to maintain the structure of free list.
* I was using union to hide the fact of overlapping memory
* usage. However, that cause problem on MSVC. So, I now turn
* back to hack this with casting.
*/
ACE_Cached_Mem_Pool_Node<T> *next_;
};
/**
* @class ACE_Cached_Allocator
*
* @brief A fixed-size allocator that caches items for quicker access.
*
* This class enables caching of dynamically allocated,
* fixed-sized classes. Notice that the <code>sizeof (TYPE)</code>
* must be greater than or equal to <code> sizeof (void*) </code> for
* this to work properly.
*
* This class can be configured flexibly with different types of
* ACE_LOCK strategies that support the @a ACE_Thread_Mutex,
* @a ACE_Thread_Semaphore, @a ACE_Process_Mutex, and @a
* ACE_Process_Semaphore constructor API.
*
* @sa ACE_Dynamic_Cached_Allocator
*/
template <class T, class ACE_LOCK>
class ACE_Cached_Allocator : public ACE_New_Allocator
{
public:
/// Create a cached memory pool with @a n_chunks chunks
/// each with sizeof (TYPE) size.
ACE_Cached_Allocator (size_t n_chunks);
/// Clear things up.
~ACE_Cached_Allocator (void);
/**
* Get a chunk of memory from free list cache. Note that @a nbytes is
* only checked to make sure that it's less or equal to sizeof T, and is
* otherwise ignored since @c malloc() always returns a pointer to an
* item of sizeof (T).
*/
void *malloc (size_t nbytes = sizeof (T));
/**
* Get a chunk of memory from free list cache, giving them
* @a initial_value. Note that @a nbytes is only checked to make sure
* that it's less or equal to sizeof T, and is otherwise ignored since
* calloc() always returns a pointer to an item of sizeof (T).
*/
virtual void *calloc (size_t nbytes,
char initial_value = '\0');
/// This method is a no-op and just returns 0 since the free list
/// only works with fixed sized entities.
virtual void *calloc (size_t n_elem,
size_t elem_size,
char initial_value = '\0');
/// Return a chunk of memory back to free list cache.
void free (void *);
/// Return the number of chunks available in the cache.
size_t pool_depth (void);
private:
/// Remember how we allocate the memory in the first place so
/// we can clear things up later.
char *pool_;
/// Maintain a cached memory free list.
ACE_Locked_Free_List<ACE_Cached_Mem_Pool_Node<T>, ACE_LOCK> free_list_;
};
/**
* @class ACE_Dynamic_Cached_Allocator
*
* @brief A size-based allocator that caches blocks for quicker access.
*
* This class enables caching of dynamically allocated,
* fixed-size chunks. Notice that the <code>chunk_size</code>
* must be greater than or equal to <code> sizeof (void*) </code> for
* this to work properly.
*
* This class can be configured flexibly with different types of
* ACE_LOCK strategies that support the @a ACE_Thread_Mutex and @a
* ACE_Process_Mutex constructor API.
*
* @sa ACE_Cached_Allocator
*/
template <class ACE_LOCK>
class ACE_Dynamic_Cached_Allocator : public ACE_New_Allocator
{
public:
/// Create a cached memory pool with @a n_chunks chunks
/// each with @a chunk_size size.
ACE_Dynamic_Cached_Allocator (size_t n_chunks, size_t chunk_size);
/// Clear things up.
~ACE_Dynamic_Cached_Allocator (void);
/**
* Get a chunk of memory from free list cache. Note that @a nbytes is
* only checked to make sure that it's less or equal to @a chunk_size,
* and is otherwise ignored since malloc() always returns a pointer to an
* item of @a chunk_size size.
*/
void *malloc (size_t nbytes = 0);
/**
* Get a chunk of memory from free list cache, giving them
* @a initial_value. Note that @a nbytes is only checked to make sure
* that it's less or equal to @a chunk_size, and is otherwise ignored
* since calloc() always returns a pointer to an item of @a chunk_size.
*/
virtual void *calloc (size_t nbytes,
char initial_value = '\0');
/// This method is a no-op and just returns 0 since the free list
/// only works with fixed sized entities.
virtual void *calloc (size_t n_elem,
size_t elem_size,
char initial_value = '\0');
/// Return a chunk of memory back to free list cache.
void free (void *);
/// Return the number of chunks available in the cache.
size_t pool_depth (void);
private:
/// Remember how we allocate the memory in the first place so
/// we can clear things up later.
char *pool_;
/// Maintain a cached memory free list. We use @c char as template
/// parameter, although sizeof(char) is usually less than
/// sizeof(void*). Really important is that @a chunk_size
/// must be greater or equal to sizeof(void*).
ACE_Locked_Free_List<ACE_Cached_Mem_Pool_Node<char>, ACE_LOCK> free_list_;
/// Remember the size of our chunks.
size_t chunk_size_;
};
/**
* @class ACE_Allocator_Adapter
*
* @brief This class is an adapter that allows the ACE_Allocator to
* use the ACE_Malloc class below.
*/
template <class MALLOC>
class ACE_Allocator_Adapter : public ACE_Allocator
{
public:
// Trait.
typedef MALLOC ALLOCATOR;
typedef const typename MALLOC::MEMORY_POOL_OPTIONS *MEMORY_POOL_OPTIONS;
// = Initialization.
/**
* Note that @a pool_name should be located in
* a directory with the appropriate visibility and protection so
* that all processes that need to access it can do so. */
ACE_Allocator_Adapter (const char *pool_name = 0);
/**
* Note that @a pool_name should be located in
* a directory with the appropriate visibility and protection so
* that all processes that need to access it can do so.
*/
ACE_Allocator_Adapter (const char *pool_name,
const char *lock_name,
MEMORY_POOL_OPTIONS options = 0);
#if defined (ACE_HAS_WCHAR)
/**
* Note that @a pool_name should be located in
* a directory with the appropriate visibility and protection so
* that all processes that need to access it can do so. */
ACE_Allocator_Adapter (const wchar_t *pool_name);
/**
* Note that @a pool_name should be located in
* a directory with the appropriate visibility and protection so
* that all processes that need to access it can do so.
*/
ACE_Allocator_Adapter (const wchar_t *pool_name,
const wchar_t *lock_name,
MEMORY_POOL_OPTIONS options = 0);
#endif /* ACE_HAS_WCHAR */
/// Destructor.
virtual ~ACE_Allocator_Adapter (void);
// = Memory Management
/// Allocate @a nbytes, but don't give them any initial value.
virtual void *malloc (size_t nbytes);
/// Allocate @a nbytes, giving them all an @a initial_value.
virtual void *calloc (size_t nbytes, char initial_value = '\0');
/// Allocate @a n_elem each of size @a elem_size, giving them
/// @a initial_value.
virtual void *calloc (size_t n_elem,
size_t elem_size,
char initial_value = '\0');
/// Free @a ptr (must have been allocated by ACE_Allocator::malloc()).
virtual void free (void *ptr);
/// Remove any resources associated with this memory manager.
virtual int remove (void);
// = Map manager like functions
/**
* Associate @a name with @a pointer. If @a duplicates == 0 then do
* not allow duplicate @a name/pointer associations, else if
* @a duplicates != 0 then allow duplicate @a name/pointer
* associations. Returns 0 if successfully binds (1) a previously
* unbound @a name or (2) @a duplicates != 0, returns 1 if trying to
* bind a previously bound @a name and @a duplicates == 0, else
* returns -1 if a resource failure occurs.
*/
virtual int bind (const char *name, void *pointer, int duplicates = 0);
/**
* Associate @a name with @a pointer. Does not allow duplicate
* name/pointer associations. Returns 0 if successfully binds
* (1) a previously unbound @a name, 1 if trying to bind a previously
* bound @a name, or returns -1 if a resource failure occurs. When
* this call returns, @a pointer's value will always reference the
* void * that @a name is associated with. Thus, if the caller needs
* to use @a pointer (e.g., to free it) a copy must be maintained by
* the caller.
*/
virtual int trybind (const char *name, void *&pointer);
/// Locate @a name and pass out parameter via pointer. If found,
/// return 0, returns -1 if @a name isn't found.
virtual int find (const char *name, void *&pointer);
/// Returns 0 if the name is in the mapping and -1 if not.
virtual int find (const char *name);
/// Unbind (remove) the name from the map. Don't return the pointer
/// to the caller
virtual int unbind (const char *name);
/// Break any association of name. Returns the value of pointer in
/// case the caller needs to deallocate memory.
virtual int unbind (const char *name, void *&pointer);
// = Protection and "sync" (i.e., flushing data to backing store).
/**
* Sync @a len bytes of the memory region to the backing store
* starting at @c this->base_addr_. If @a len == -1 then sync the
* whole region.
*/
virtual int sync (ssize_t len = -1, int flags = MS_SYNC);
/// Sync @a len bytes of the memory region to the backing store
/// starting at @c addr_.
virtual int sync (void *addr, size_t len, int flags = MS_SYNC);
/**
* Change the protection of the pages of the mapped region to @a prot
* starting at @c this->base_addr_ up to @a len bytes. If @a len == -1
* then change protection of all pages in the mapped region.
*/
virtual int protect (ssize_t len = -1, int prot = PROT_RDWR);
/// Change the protection of the pages of the mapped region to @a prot
/// starting at @a addr up to @a len bytes.
virtual int protect (void *addr, size_t len, int prot = PROT_RDWR);
/// Returns the underlying allocator.
ALLOCATOR &alloc (void);
#if defined (ACE_HAS_MALLOC_STATS)
/// Dump statistics of how malloc is behaving.
virtual void print_stats (void) const;
#endif /* ACE_HAS_MALLOC_STATS */
/// Dump the state of the object.
virtual void dump (void) const;
private:
/// ALLOCATOR instance, which is owned by the adapter.
ALLOCATOR allocator_;
};
/**
* @class ACE_Static_Allocator
*
* @brief Defines a class that provided a highly optimized memory
* management scheme for allocating memory statically.
*
* This class allocates a fixed-size @c POOL_SIZE of memory and
* uses the ACE_Static_Allocator_Base class implementations of
* malloc() and calloc() to optimize memory allocation from this
* pool.
*/
template <size_t POOL_SIZE>
class ACE_Static_Allocator : public ACE_Static_Allocator_Base
{
public:
ACE_Static_Allocator (void)
: ACE_Static_Allocator_Base (pool_, POOL_SIZE)
{
// This function <{must}> be inlined!!!
}
private:
/// Pool contents.
char pool_[POOL_SIZE];
};
// Forward declaration.
template <ACE_MEM_POOL_1, class ACE_LOCK, class ACE_CB>
class ACE_Malloc_LIFO_Iterator_T;
// Ensure backwards compatibility...
#define ACE_Malloc_Iterator ACE_Malloc_LIFO_Iterator
// Forward declaration.
template <ACE_MEM_POOL_1, class ACE_LOCK, class ACE_CB>
class ACE_Malloc_FIFO_Iterator_T;
/**
* @class ACE_Malloc_T
*
* @brief A class template that uses parameterized types to provide
* an extensible mechanism for encapsulating various dynamic
* memory management strategies.
*
* This class can be configured flexibly with different
* MEMORY_POOL strategies and different types of ACE_LOCK
* strategies that support the ACE_Thread_Mutex and ACE_Process_Mutex
* constructor API.
*
* Common MEMORY_POOL strategies to use with this class are:
* - ACE_Local_Memory_Pool
* - ACE_MMAP_Memory_Pool
* - ACE_Pagefile_Memory_Pool
* - ACE_Shared_Memory_Pool
* - ACE_Sbrk_Memory_Pool
*
* The MEMORY_POOL class must provide the following methods:
* - constructor (const ACE_TCHAR *pool_name)
* - constructor (const ACE_TCHAR *pool_name, const MEMORY_POOL_OPTIONS *options)
* - void dump (void) const (needed if ACE is built with ACE_HAS_DUMP defined)
* - void *init_acquire (size_t nbytes, size_t &rounded_bytes, int &first_time);
* - int release (void)
* - void *acquire (size_t nbytes, size_t &rounded_bytes)
* - void *base_addr (void)
* - seh_selector() (only needed on Windows)
*
* Note that the ACE_Allocator_Adapter class can be used to integrate allocator
* classes which do not meet the interface requirements of ACE_Malloc_T.
*
* @Note The bind() and find() methods use linear search, so
* it's not a good idea to use them for managing a large number of
* entities. If you need to manage a large number of entities, it's
* recommended that you bind() an ACE_Hash_Map_Manager that
* resides in shared memory, use find() to locate it, and then
* store/retrieve the entities in the hash map.
*/
template <ACE_MEM_POOL_1, class ACE_LOCK, class ACE_CB>
class ACE_Malloc_T
{
public:
friend class ACE_Malloc_LIFO_Iterator_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_CB>;
friend class ACE_Malloc_FIFO_Iterator_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_CB>;
typedef ACE_MEM_POOL MEMORY_POOL;
typedef ACE_MEM_POOL_OPTIONS MEMORY_POOL_OPTIONS;
typedef typename ACE_CB::ACE_Name_Node NAME_NODE;
typedef typename ACE_CB::ACE_Malloc_Header MALLOC_HEADER;
// = Initialization and termination methods.
/**
* Initialize ACE_Malloc. This constructor passes @a pool_name to
* initialize the memory pool, and uses ACE::basename() to
* automatically extract out the name used for the underlying lock
* name (if necessary).
*
* Note that @a pool_name should be located in
* a directory with the appropriate visibility and protection so
* that all processes that need to access it can do so.
*/
ACE_Malloc_T (const ACE_TCHAR *pool_name = 0);
/**
* Initialize ACE_Malloc. This constructor passes @a pool_name to
* initialize the memory pool, and uses @a lock_name to automatically
* extract out the name used for the underlying lock name (if
* necessary). In addition, @a options is passed through to
* initialize the underlying memory pool.
*
* Note that @a pool_name should be located in
* a directory with the appropriate visibility and protection so
* that all processes that need to access it can do so.
*/
ACE_Malloc_T (const ACE_TCHAR *pool_name,
const ACE_TCHAR *lock_name,
const ACE_MEM_POOL_OPTIONS *options = 0);
/**
* Initialize an ACE_Malloc with an external ACE_LOCK.
* This constructor passes @a pool_name and @a options to initialize
* the memory pool. @a lock is used as the pool lock, and must be
* properly set up and ready for use before being passed to this method.
*/
ACE_Malloc_T (const ACE_TCHAR *pool_name,
const ACE_MEM_POOL_OPTIONS *options,
ACE_LOCK *lock);
/// Destructor
~ACE_Malloc_T (void);
/// Get Reference counter.
int ref_counter (void);
/// Release ref counter.
int release (int close = 0);
/// Releases resources allocated by this object.
int remove (void);
// = Memory management
/// Allocate @a nbytes, but don't give them any initial value.
void *malloc (size_t nbytes);
/// Allocate @a nbytes, giving them @a initial_value.
void *calloc (size_t nbytes, char initial_value = '\0');
/// Allocate @a n_elem each of size @a elem_size, giving them
/// @a initial_value.
void *calloc (size_t n_elem,
size_t elem_size,
char initial_value = '\0');
/// Deallocate memory pointed to by @a ptr, which must have been
/// allocated previously by malloc().
void free (void *ptr);
/// Returns a reference to the underlying memory pool.
MEMORY_POOL &memory_pool (void);
// = Map manager like functions
/**
* Associate @a name with @a pointer. If @a duplicates == 0 then do
* not allow duplicate name/pointer associations, else if
* @a duplicates != 0 then allow duplicate name/pointer
* associations. Returns 0 if successfully binds (1) a previously
* unbound @a name or (2) @a duplicates != 0, returns 1 if trying to
* bind a previously bound @a name and @a duplicates == 0, else
* returns -1 if a resource failure occurs.
*/
int bind (const char *name, void *pointer, int duplicates = 0);
/**
* Associate @a name with @a pointer. Does not allow duplicate
* name/pointer associations. Returns 0 if successfully binds
* (1) a previously unbound @a name, 1 if trying to bind a previously
* bound @a name, or returns -1 if a resource failure occurs. When
* this call returns @a pointer's value will always reference the
* void * that @a name is associated with. Thus, if the caller needs
* to use @a pointer (e.g., to free it) a copy must be maintained by
* the caller.
*/
int trybind (const char *name, void *&pointer);
/// Locate @a name and pass out parameter via @a pointer. If found,
/// return 0, returns -1 if failure occurs.
int find (const char *name, void *&pointer);
/// Returns 0 if @a name is in the mapping. -1, otherwise.
int find (const char *name);
/**
* Unbind (remove) the name from the map. Don't return the pointer
* to the caller. If you want to remove all occurrences of @a name
* you'll need to call this method multiple times until it fails...
*/
int unbind (const char *name);
/**
* Unbind (remove) one association of @a name to @a pointer. Returns
* the value of pointer in case the caller needs to deallocate
* memory. If you want to remove all occurrences of @a name you'll
* need to call this method multiple times until it fails...
*/
int unbind (const char *name, void *&pointer);
// = Protection and "sync" (i.e., flushing data to backing store).
/**
* Sync @a len bytes of the memory region to the backing store
* starting at @c this->base_addr_. If @a len == -1 then sync the
* whole region.
*/
int sync (ssize_t len = -1, int flags = MS_SYNC);
/// Sync @a len bytes of the memory region to the backing store
/// starting at @c addr_.
int sync (void *addr, size_t len, int flags = MS_SYNC);
/**
* Change the protection of the pages of the mapped region to @a prot
* starting at @c this->base_addr_ up to @a len bytes. If @a len == -1
* then change protection of all pages in the mapped region.
*/
int protect (ssize_t len = -1, int prot = PROT_RDWR);
/// Change the protection of the pages of the mapped region to @a prot
/// starting at @a addr up to @a len bytes.
int protect (void *addr, size_t len, int prot = PROT_RDWR);
/**
* Returns a count of the number of available chunks that can hold
* @a size byte allocations. Function can be used to determine if you
* have reached a water mark. This implies a fixed amount of allocated
* memory.
*
* @param size The chunk size of that you would like a count of
* @return Function returns the number of chunks of the given size
* that would fit in the currently allocated memory.
*/
ssize_t avail_chunks (size_t size) const;
#if defined (ACE_HAS_MALLOC_STATS)
/// Dump statistics of how malloc is behaving.
void print_stats (void) const;
#endif /* ACE_HAS_MALLOC_STATS */
/// Returns a pointer to the lock used to provide mutual exclusion to
/// an ACE_Malloc allocator.
ACE_LOCK &mutex (void);
/// Dump the state of an object.
void dump (void) const;
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
/// Return cb_ptr value.
void *base_addr (void);
/**
* Bad flag. This operation should be called immediately after the
* construction of the Malloc object to query whether the object was
* constructed successfully. If not, the user should invoke @c
* remove and release the object (it is not usable.)
* @retval 0 if all is fine. non-zero if this malloc object is
* unuable.
*/
int bad (void);
private:
/// Initialize the Malloc pool.
int open (void);
/// Associate @a name with @a pointer. Assumes that locks are held by
/// callers.
int shared_bind (const char *name,
void *pointer);
/**
* Try to locate @a name. If found, return the associated
* ACE_Name_Node, else returns 0 if can't find the @a name.
* Assumes that locks are held by callers. Remember to cast the
* return value to ACE_CB::ACE_Name_Node*.
*/
void *shared_find (const char *name);
/// Allocate memory. Assumes that locks are held by callers.
void *shared_malloc (size_t nbytes);
/// Deallocate memory. Assumes that locks are held by callers.
void shared_free (void *ptr);
/// Pointer to the control block that is stored in memory controlled
/// by <MEMORY_POOL>.
ACE_CB *cb_ptr_;
/// Pool of memory used by ACE_Malloc to manage its freestore.
MEMORY_POOL memory_pool_;
/// Lock that ensures mutual exclusion for the memory pool.
ACE_LOCK *lock_;
/// True if destructor should delete the lock
bool delete_lock_;
/// Keep track of failure in constructor.
int bad_flag_;
};
/*****************************************************************************/
/**
* @class ACE_Malloc_Lock_Adapter_T
*
* @brief Template functor adapter for lock strategies used with ACE_Malloc_T.
*
* This class acts as a factory for lock strategies that have various ctor
* signatures. If the lock strategy's ctor takes an ACE_TCHAR* as the first
* and only required parameter, it will just work. Otherwise use template
* specialization to create a version that matches the lock strategy's ctor
* signature. See ACE_Process_Semaphore and ACE_Thread_Semaphore for
* examples.
*/
/*****************************************************************************/
/**
* @class ACE_Malloc_LIFO_Iterator_T
*
* @brief LIFO iterator for names stored in Malloc'd memory.
*
* This class can be configured flexibly with different types of
* ACE_LOCK strategies that support the @a ACE_Thread_Mutex and @a
* ACE_Process_Mutex constructor API.
*
* Does not support deletions while iteration is occurring.
*/
template <ACE_MEM_POOL_1, class ACE_LOCK, class ACE_CB>
class ACE_Malloc_LIFO_Iterator_T
{
public:
typedef typename ACE_CB::ACE_Name_Node NAME_NODE;
typedef typename ACE_CB::ACE_Malloc_Header MALLOC_HEADER;
// = Initialization method.
/// If @a name = 0 it will iterate through everything else only
/// through those entries whose @a name match.
ACE_Malloc_LIFO_Iterator_T (ACE_Malloc_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_CB> &malloc,
const char *name = 0);
/// Destructor.
~ACE_Malloc_LIFO_Iterator_T (void);
// = Iteration methods.
/// Returns 1 when all items have been seen, else 0.
int done (void) const;
/// Pass back the next entry in the set that hasn't yet been
/// visited. Returns 0 when all items have been seen, else 1.
int next (void *&next_entry);
/**
* Pass back the next entry (and the name associated with it) in
* the set that hasn't yet been visited. Returns 0 when all items
* have been seen, else 1.
*/
int next (void *&next_entry, const char *&name);
/// Move forward by one element in the set. Returns 0 when all the
/// items in the set have been seen, else 1.
int advance (void);
/// Dump the state of an object.
void dump (void) const;
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
private:
/// Malloc we are iterating over.
ACE_Malloc_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_CB> &malloc_;
/// Keeps track of how far we've advanced...
NAME_NODE *curr_;
// FUZZ: disable check_for_ACE_Guard
/// Lock Malloc for the lifetime of the iterator.
ACE_Read_Guard<ACE_LOCK> guard_;
// FUZZ: enable check_for_ACE_Guard
/// Name that we are searching for.
const char *name_;
};
/**
* @class ACE_Malloc_FIFO_Iterator_T
*
* @brief FIFO iterator for names stored in Malloc'd memory.
*
* This class can be configured flexibly with different types of
* ACE_LOCK strategies that support the @a ACE_Thread_Mutex and @a
* ACE_Process_Mutex constructor API.
*
* Does not support deletions while iteration is occurring.
*/
template <ACE_MEM_POOL_1, class ACE_LOCK, class ACE_CB>
class ACE_Malloc_FIFO_Iterator_T
{
public:
typedef typename ACE_CB::ACE_Name_Node NAME_NODE;
typedef typename ACE_CB::ACE_Malloc_Header MALLOC_HEADER;
/// If @a name = 0 it will iterate through everything else only
/// through those entries whose @a name match.
ACE_Malloc_FIFO_Iterator_T (ACE_Malloc_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_CB> &malloc,
const char *name = 0);
/// Destructor.
~ACE_Malloc_FIFO_Iterator_T (void);
// = Iteration methods.
/// Returns 1 when all items have been seen, else 0.
int done (void) const;
/// Pass back the next entry in the set that hasn't yet been
/// visited. Returns 0 when all items have been seen, else 1.
int next (void *&next_entry);
/**
* Pass back the next entry (and the name associated with it) in
* the set that hasn't yet been visited. Returns 0 when all items
* have been seen, else 1.
*/
int next (void *&next_entry, const char *&name);
/// Move forward by one element in the set. Returns 0 when all the
/// items in the set have been seen, else 1.
int advance (void);
/// Go to the starting element that was inserted first. Returns 0
/// when there is no item in the set, else 1.
int start (void);
/// Dump the state of an object.
void dump (void) const;
/// Declare the dynamic allocation hooks.
ACE_ALLOC_HOOK_DECLARE;
private:
/// Malloc we are iterating over.
ACE_Malloc_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_CB> &malloc_;
/// Keeps track of how far we've advanced...
NAME_NODE *curr_;
// FUZZ: disable check_for_ACE_Guard
/// Lock Malloc for the lifetime of the iterator.
ACE_Read_Guard<ACE_LOCK> guard_;
// FUZZ: enable check_for_ACE_Guard
/// Name that we are searching for.
const char *name_;
};
template <ACE_MEM_POOL_1, class ACE_LOCK>
class ACE_Malloc : public ACE_Malloc_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_Control_Block>
{
public:
// = Initialization and termination methods.
/**
* Initialize ACE_Malloc. This constructor passes @a pool_name to
* initialize the memory pool, and uses ACE::basename() to
* automatically extract out the name used for the underlying lock
* name (if necessary). Note that @a pool_name should be located in
* a directory with the appropriate visibility and protection so
* that all processes that need to access it can do so.
*/
ACE_Malloc (const ACE_TCHAR *pool_name = 0);
/**
* Initialize ACE_Malloc. This constructor passes @a pool_name to
* initialize the memory pool, and uses @a lock_name to automatically
* extract out the name used for the underlying lock name (if
* necessary). In addition, @a options is passed through to
* initialize the underlying memory pool. Note that @a pool_name
* should be located in a directory with the appropriate visibility
* and protection so that all processes that need to access it can
* do so.
*/
ACE_Malloc (const ACE_TCHAR *pool_name,
const ACE_TCHAR *lock_name,
const ACE_MEM_POOL_OPTIONS *options = 0);
};
template <ACE_MEM_POOL_1, class ACE_LOCK>
class ACE_Malloc_LIFO_Iterator : public ACE_Malloc_LIFO_Iterator_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_Control_Block>
{
public:
/// If @a name = 0 it will iterate through everything else only
/// through those entries whose @a name match.
ACE_Malloc_LIFO_Iterator (ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK> &malloc,
const char *name = 0);
};
template <ACE_MEM_POOL_1, class ACE_LOCK>
class ACE_Malloc_FIFO_Iterator : public ACE_Malloc_FIFO_Iterator_T<ACE_MEM_POOL_2, ACE_LOCK, ACE_Control_Block>
{
public:
/// If @a name = 0 it will iterate through everything else only
/// through those entries whose @a name match.
ACE_Malloc_FIFO_Iterator (ACE_Malloc<ACE_MEM_POOL_2, ACE_LOCK> &malloc,
const char *name = 0);
};
template <class ACE_LOCK>
class ACE_Malloc_Lock_Adapter_T
{
public:
ACE_LOCK * operator () (const ACE_TCHAR *myname);
};
ACE_END_VERSIONED_NAMESPACE_DECL
#if defined (__ACE_INLINE__)
#include "ace/Malloc_T.inl"
#endif /* __ACE_INLINE__ */
#if defined (ACE_TEMPLATES_REQUIRE_SOURCE)
#include "ace/Malloc_T.cpp"
#endif /* ACE_TEMPLATES_REQUIRE_SOURCE */
#if defined (ACE_TEMPLATES_REQUIRE_PRAGMA)
#pragma implementation ("Malloc_T.cpp")
#endif /* ACE_TEMPLATES_REQUIRE_PRAGMA */
#include /**/ "ace/post.h"
#endif /* ACE_MALLOC_H */