Files
azerothcore-wotlk-pbot/modules/dep/acelite/ace/Thread_Manager.cpp

2248 lines
63 KiB
C++

#include "ace/TSS_T.h"
#include "ace/Thread_Manager.h"
#include "ace/Dynamic.h"
#include "ace/Object_Manager.h"
#include "ace/Singleton.h"
#include "ace/Auto_Ptr.h"
#include "ace/Guard_T.h"
#include "ace/Time_Value.h"
#include "ace/OS_NS_sys_time.h"
#include "ace/Truncate.h"
#if !defined (__ACE_INLINE__)
#include "ace/Thread_Manager.inl"
#endif /* __ACE_INLINE__ */
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
ACE_At_Thread_Exit::~ACE_At_Thread_Exit (void)
{
this->do_apply ();
}
ACE_At_Thread_Exit_Func::~ACE_At_Thread_Exit_Func (void)
{
this->do_apply ();
}
void
ACE_At_Thread_Exit_Func::apply (void)
{
this->func_ (this->object_, this->param_);
}
ACE_ALLOC_HOOK_DEFINE(ACE_Thread_Control)
ACE_ALLOC_HOOK_DEFINE(ACE_Thread_Manager)
#if ! defined (ACE_THREAD_MANAGER_LACKS_STATICS)
// Process-wide Thread Manager.
ACE_Thread_Manager *ACE_Thread_Manager::thr_mgr_ = 0;
// Controls whether the Thread_Manager is deleted when we shut down
// (we can only delete it safely if we created it!)
bool ACE_Thread_Manager::delete_thr_mgr_ = false;
#endif /* ! defined (ACE_THREAD_MANAGER_LACKS_STATICS) */
ACE_TSS_TYPE (ACE_Thread_Exit) *ACE_Thread_Manager::thr_exit_ = 0;
int
ACE_Thread_Manager::set_thr_exit (ACE_TSS_TYPE (ACE_Thread_Exit) *ptr)
{
if (ACE_Thread_Manager::thr_exit_ == 0)
ACE_Thread_Manager::thr_exit_ = ptr;
else
return -1;
return 0;
}
void
ACE_Thread_Manager::dump (void)
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Thread_Manager::dump");
// Cast away const-ness of this in order to use its non-const lock_.
ACE_MT (ACE_GUARD (ACE_Thread_Mutex, ace_mon,
((ACE_Thread_Manager *) this)->lock_));
ACELIB_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT ("\ngrp_id_ = %d"), this->grp_id_));
ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT ("\ncurrent_count_ = %d"), this->thr_list_.size ()));
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
iter.next ()->dump ();
}
ACELIB_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
ACE_Thread_Descriptor::~ACE_Thread_Descriptor (void)
{
delete this->sync_;
}
void
ACE_Thread_Descriptor::at_pop (int apply)
{
ACE_TRACE ("ACE_Thread_Descriptor::at_pop");
// Get first at from at_exit_list
ACE_At_Thread_Exit* at = this->at_exit_list_;
// Remove at from at_exit list
this->at_exit_list_ = at->next_;
// Apply if required
if (apply)
{
at->apply ();
// Do the apply method
at->was_applied (true);
// Mark at has been applied to avoid double apply from
// at destructor
}
// If at is not owner delete at.
if (!at->is_owner ())
delete at;
}
void
ACE_Thread_Descriptor::at_push (ACE_At_Thread_Exit* cleanup, bool is_owner)
{
ACE_TRACE ("ACE_Thread_Descriptor::at_push");
cleanup->is_owner (is_owner);
cleanup->td_ = this;
cleanup->next_ = at_exit_list_;
at_exit_list_ = cleanup;
}
int
ACE_Thread_Descriptor::at_exit (ACE_At_Thread_Exit& cleanup)
{
ACE_TRACE ("ACE_Thread_Descriptor::at_exit");
at_push (&cleanup, 1);
return 0;
}
int
ACE_Thread_Descriptor::at_exit (ACE_At_Thread_Exit* cleanup)
{
ACE_TRACE ("ACE_Thread_Descriptor::at_exit");
if (cleanup==0)
return -1;
else
{
this->at_push (cleanup);
return 0;
}
}
void
ACE_Thread_Descriptor::do_at_exit ()
{
ACE_TRACE ("ACE_Thread_Descriptor::do_at_exit");
while (at_exit_list_!=0)
this->at_pop ();
}
void
ACE_Thread_Descriptor::terminate ()
{
ACE_TRACE ("ACE_Thread_Descriptor::terminate");
if (!terminated_)
{
ACE_Log_Msg* log_msg = this->log_msg_;
terminated_ = true;
// Run at_exit hooks
this->do_at_exit ();
// We must remove Thread_Descriptor from Thread_Manager list
if (this->tm_ != 0)
{
int close_handle = 0;
#if !defined (ACE_HAS_VXTHREADS)
// Threads created with THR_DAEMON shouldn't exist here, but
// just to be safe, let's put it here.
if (ACE_BIT_DISABLED (this->thr_state_, ACE_Thread_Manager::ACE_THR_JOINING))
{
if (ACE_BIT_DISABLED (this->flags_, THR_DETACHED | THR_DAEMON)
|| ACE_BIT_ENABLED (this->flags_, THR_JOINABLE))
{
// Mark thread as terminated.
ACE_SET_BITS (this->thr_state_, ACE_Thread_Manager::ACE_THR_TERMINATED);
tm_->register_as_terminated (this);
// Must copy the information here because td will be
// "freed" below.
}
#if defined (ACE_WIN32)
else
{
close_handle = 1;
}
#endif /* ACE_WIN32 */
}
#endif /* !ACE_HAS_VXTHREADS */
// Remove thread descriptor from the table. 'this' is invalid
// upon return.
if (this->tm_ != 0)
{
// remove_thr makes use of 'this' invalid on return.
// Code below will free log_msg, so clear our pointer
// now - it's already been saved in log_msg.
this->log_msg_ = 0;
tm_->remove_thr (this, close_handle);
}
}
// Check if we need delete ACE_Log_Msg instance
// If ACE_TSS_cleanup was not executed first log_msg == 0
if (log_msg == 0)
{
// Only inform to ACE_TSS_cleanup that it must delete the log instance
// setting ACE_LOG_MSG thr_desc to 0.
ACE_LOG_MSG->thr_desc (0);
}
else
{
delete log_msg;
}
}
}
int
ACE_Thread_Descriptor::at_exit (void *object,
ACE_CLEANUP_FUNC cleanup_hook,
void *param)
{
ACE_TRACE ("ACE_Thread_Descriptor::at_exit");
// To keep compatibility, when cleanup_hook is null really is a at_pop
// without apply.
if (cleanup_hook == 0)
{
if (this->at_exit_list_!= 0)
this->at_pop(0);
}
else
{
ACE_At_Thread_Exit* cleanup = 0;
ACE_NEW_RETURN (cleanup,
ACE_At_Thread_Exit_Func (object,
cleanup_hook,
param),
-1);
this->at_push (cleanup);
}
return 0;
}
void
ACE_Thread_Descriptor::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Thread_Descriptor::dump");
ACELIB_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT ("\nthr_id_ = %d"), this->thr_id_));
ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT ("\nthr_handle_ = %d"), this->thr_handle_));
ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT ("\ngrp_id_ = %d"), this->grp_id_));
ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT ("\nthr_state_ = %d"), this->thr_state_));
ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT ("\nflags_ = %x\n"), this->flags_));
ACELIB_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
ACE_Thread_Descriptor::ACE_Thread_Descriptor (void)
: log_msg_ (0),
at_exit_list_ (0),
tm_ (0),
terminated_ (false)
{
ACE_TRACE ("ACE_Thread_Descriptor::ACE_Thread_Descriptor");
ACE_NEW (this->sync_,
ACE_DEFAULT_THREAD_MANAGER_LOCK);
}
void
ACE_Thread_Descriptor::acquire_release (void)
{
// Just try to acquire the lock then release it.
#if defined (ACE_THREAD_MANAGER_USES_SAFE_SPAWN)
if (ACE_BIT_DISABLED (this->thr_state_, ACE_Thread_Manager::ACE_THR_SPAWNED))
#endif /* ACE_THREAD_MANAGER_USES_SAFE_SPAWN */
{
this->sync_->acquire ();
// Acquire the lock before removing <td> from the thread table. If
// this thread is in the table already, it should simply acquire the
// lock easily.
// Once we get the lock, we must have registered.
ACE_ASSERT (ACE_BIT_ENABLED (this->thr_state_, ACE_Thread_Manager::ACE_THR_SPAWNED));
this->sync_->release ();
// Release the lock before putting it back to freelist.
}
}
void
ACE_Thread_Descriptor::acquire (void)
{
// Just try to acquire the lock then release it.
#if defined (ACE_THREAD_MANAGER_USES_SAFE_SPAWN)
if (ACE_BIT_DISABLED (this->thr_state_, ACE_Thread_Manager::ACE_THR_SPAWNED))
#endif /* ACE_THREAD_MANAGER_USES_SAFE_SPAWN */
{
this->sync_->acquire ();
}
}
void
ACE_Thread_Descriptor::release (void)
{
// Just try to acquire the lock then release it.
#if defined (ACE_THREAD_MANAGER_USES_SAFE_SPAWN)
if (ACE_BIT_DISABLED (this->thr_state_, ACE_Thread_Manager::ACE_THR_SPAWNED))
#endif /* ACE_THREAD_MANAGER_USES_SAFE_SPAWN */
{
this->sync_->release ();
// Release the lock before putting it back to freelist.
}
}
// The following macro simplifies subsequence code.
#define ACE_FIND(OP,INDEX) \
ACE_Thread_Descriptor *INDEX = OP; \
ACE_Thread_Descriptor *
ACE_Thread_Manager::thread_descriptor (ACE_thread_t thr_id)
{
ACE_TRACE ("ACE_Thread_Manager::thread_descriptor");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, 0));
ACE_FIND (this->find_thread (thr_id), ptr);
return ptr;
}
ACE_Thread_Descriptor *
ACE_Thread_Manager::hthread_descriptor (ACE_hthread_t thr_handle)
{
ACE_TRACE ("ACE_Thread_Manager::hthread_descriptor");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, 0));
ACE_FIND (this->find_hthread (thr_handle), ptr);
return ptr;
}
// Return the thread descriptor (indexed by ACE_hthread_t).
int
ACE_Thread_Manager::thr_self (ACE_hthread_t &self)
{
ACE_TRACE ("ACE_Thread_Manager::thr_self");
ACE_Thread_Descriptor *desc =
this->thread_desc_self ();
if (desc == 0)
return -1;
else
desc->self (self);
return 0;
}
// Initialize the synchronization variables.
ACE_Thread_Manager::ACE_Thread_Manager (size_t prealloc,
size_t lwm,
size_t inc,
size_t hwm)
: grp_id_ (1),
automatic_wait_ (1)
#if defined (ACE_HAS_THREADS)
, zero_cond_ (lock_)
#endif /* ACE_HAS_THREADS */
, thread_desc_freelist_ (ACE_FREE_LIST_WITH_POOL,
prealloc, lwm, hwm, inc)
{
ACE_TRACE ("ACE_Thread_Manager::ACE_Thread_Manager");
}
ACE_Thread_Manager::ACE_Thread_Manager (const ACE_Condition_Attributes &attributes,
size_t prealloc,
size_t lwm,
size_t inc,
size_t hwm)
: grp_id_ (1),
automatic_wait_ (1)
#if defined (ACE_HAS_THREADS)
, zero_cond_ (lock_, attributes)
#endif /* ACE_HAS_THREADS */
, thread_desc_freelist_ (ACE_FREE_LIST_WITH_POOL,
prealloc, lwm, hwm, inc)
{
#if !defined (ACE_HAS_THREADS)
ACE_UNUSED_ARG (attributes);
#endif /* ACE_HAS_THREADS */
ACE_TRACE ("ACE_Thread_Manager::ACE_Thread_Manager");
}
#if ! defined (ACE_THREAD_MANAGER_LACKS_STATICS)
ACE_Thread_Manager *
ACE_Thread_Manager::instance (void)
{
ACE_TRACE ("ACE_Thread_Manager::instance");
if (ACE_Thread_Manager::thr_mgr_ == 0)
{
// Perform Double-Checked Locking Optimization.
ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex, ace_mon,
*ACE_Static_Object_Lock::instance (), 0));
if (ACE_Thread_Manager::thr_mgr_ == 0)
{
ACE_NEW_RETURN (ACE_Thread_Manager::thr_mgr_,
ACE_Thread_Manager,
0);
ACE_Thread_Manager::delete_thr_mgr_ = true;
}
}
return ACE_Thread_Manager::thr_mgr_;
}
ACE_Thread_Manager *
ACE_Thread_Manager::instance (ACE_Thread_Manager *tm)
{
ACE_TRACE ("ACE_Thread_Manager::instance");
ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex, ace_mon,
*ACE_Static_Object_Lock::instance (), 0));
ACE_Thread_Manager *t = ACE_Thread_Manager::thr_mgr_;
// We can't safely delete it since we don't know who created it!
ACE_Thread_Manager::delete_thr_mgr_ = false;
ACE_Thread_Manager::thr_mgr_ = tm;
return t;
}
void
ACE_Thread_Manager::close_singleton (void)
{
ACE_TRACE ("ACE_Thread_Manager::close_singleton");
ACE_MT (ACE_GUARD (ACE_Recursive_Thread_Mutex, ace_mon,
*ACE_Static_Object_Lock::instance ()));
if (ACE_Thread_Manager::delete_thr_mgr_)
{
// First, we clean up the thread descriptor list.
ACE_Thread_Manager::thr_mgr_->close ();
delete ACE_Thread_Manager::thr_mgr_;
ACE_Thread_Manager::thr_mgr_ = 0;
ACE_Thread_Manager::delete_thr_mgr_ = false;
}
ACE_Thread_Exit::cleanup (ACE_Thread_Manager::thr_exit_);
}
#endif /* ! defined (ACE_THREAD_MANAGER_LACKS_STATICS) */
// Close up and release all resources.
int
ACE_Thread_Manager::close ()
{
ACE_TRACE ("ACE_Thread_Manager::close");
// Clean up the thread descriptor list.
if (this->automatic_wait_)
this->wait (0, 1);
else
{
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
this->remove_thr_all ();
}
return 0;
}
ACE_Thread_Manager::~ACE_Thread_Manager (void)
{
ACE_TRACE ("ACE_Thread_Manager::~ACE_Thread_Manager");
this->close ();
}
// Run the entry point for thread spawned under the control of the
// <ACE_Thread_Manager>. This must be an extern "C" to make certain
// compilers happy...
//
// The interaction with <ACE_Thread_Exit> and
// <ace_thread_manager_adapter> works like this, with
// ACE_HAS_THREAD_SPECIFIC_STORAGE or ACE_HAS_TSS_EMULATION:
//
// o Every thread in the <ACE_Thread_Manager> is run with
// <ace_thread_manager_adapter>.
//
// o <ace_thread_manager_adapter> retrieves the singleton
// <ACE_Thread_Exit> instance from <ACE_Thread_Exit::instance>.
// The singleton gets created in thread-specific storage
// in the first call to that function. The key point is that the
// instance is in thread-specific storage.
//
// o A thread can exit by various means, such as <ACE_Thread::exit>, C++
// or Win32 exception, "falling off the end" of the thread entry
// point function, etc.
//
// o If you follow this so far, now it gets really fun . . .
// When the thread-specific storage (for the thread that
// is being destroyed) is cleaned up, the OS threads package (or
// the ACE emulation of thread-specific storage) will destroy any
// objects that are in thread-specific storage. It has a list of
// them, and just walks down the list and destroys each one.
//
// o That's where the ACE_Thread_Exit destructor gets called.
#if defined(ACE_USE_THREAD_MANAGER_ADAPTER)
extern "C" void *
ace_thread_manager_adapter (void *args)
{
#if defined (ACE_HAS_TSS_EMULATION)
// As early as we can in the execution of the new thread, allocate
// its local TS storage. Allocate it on the stack, to save dynamic
// allocation/dealloction.
void *ts_storage[ACE_TSS_Emulation::ACE_TSS_THREAD_KEYS_MAX];
ACE_TSS_Emulation::tss_open (ts_storage);
#endif /* ACE_HAS_TSS_EMULATION */
ACE_Thread_Adapter *thread_args = reinterpret_cast<ACE_Thread_Adapter *> (args);
// NOTE: this preprocessor directive should match the one in above
// ACE_Thread_Exit::instance (). With the Xavier Pthreads package,
// the exit_hook in TSS causes a seg fault. So, this works around
// that by creating exit_hook on the stack.
#if defined (ACE_HAS_THREAD_SPECIFIC_STORAGE) || defined (ACE_HAS_TSS_EMULATION)
// Obtain our thread-specific exit hook and make sure that it knows
// how to clean us up! Note that we never use this pointer directly
// (it's stored in thread-specific storage), so it's ok to
// dereference it here and only store it as a reference.
ACE_Thread_Exit &exit_hook = *ACE_Thread_Exit::instance ();
#else
// Without TSS, create an <ACE_Thread_Exit> instance. When this
// function returns, its destructor will be called because the
// object goes out of scope. The drawback with this appraoch is
// that the destructor _won't_ get called if <thr_exit> is called.
// So, threads shouldn't exit that way. Instead, they should return
// from <svc>.
ACE_Thread_Exit exit_hook;
#endif /* ACE_HAS_THREAD_SPECIFIC_STORAGE || ACE_HAS_TSS_EMULATION */
// Keep track of the <Thread_Manager> that's associated with this
// <exit_hook>.
exit_hook.thr_mgr (thread_args->thr_mgr ());
// Invoke the user-supplied function with the args.
ACE_THR_FUNC_RETURN status = thread_args->invoke ();
delete static_cast<ACE_Base_Thread_Adapter *> (thread_args);
return reinterpret_cast<void *> (status);
}
#endif
// Call the appropriate OS routine to spawn a thread. Should *not* be
// called with the lock_ held...
int
ACE_Thread_Manager::spawn_i (ACE_THR_FUNC func,
void *args,
long flags,
ACE_thread_t *t_id,
ACE_hthread_t *t_handle,
long priority,
int grp_id,
void *stack,
size_t stack_size,
ACE_Task_Base *task,
const char** thr_name)
{
// First, threads created by Thread Manager should not be daemon threads.
// Using assertion is probably a bit too strong. However, it helps
// finding this kind of error as early as possible. Perhaps we can replace
// assertion by returning error.
ACE_ASSERT (ACE_BIT_DISABLED (flags, THR_DAEMON));
// Create a new thread running <func>. *Must* be called with the
// <lock_> held...
// Get a "new" Thread Descriptor from the freelist.
auto_ptr<ACE_Thread_Descriptor> new_thr_desc (this->thread_desc_freelist_.remove ());
// Reset thread descriptor status
new_thr_desc->reset (this);
ACE_Thread_Adapter *thread_args = 0;
# if defined (ACE_HAS_WIN32_STRUCTURAL_EXCEPTIONS)
ACE_NEW_RETURN (thread_args,
ACE_Thread_Adapter (func,
args,
(ACE_THR_C_FUNC) ACE_THREAD_ADAPTER_NAME,
this,
new_thr_desc.get (),
ACE_OS_Object_Manager::seh_except_selector(),
ACE_OS_Object_Manager::seh_except_handler(),
flags),
-1);
# else
ACE_NEW_RETURN (thread_args,
ACE_Thread_Adapter (func,
args,
(ACE_THR_C_FUNC) ACE_THREAD_ADAPTER_NAME,
this,
new_thr_desc.get (),
flags),
-1);
# endif /* ACE_HAS_WIN32_STRUCTURAL_EXCEPTIONS */
auto_ptr <ACE_Base_Thread_Adapter> auto_thread_args (static_cast<ACE_Base_Thread_Adapter *> (thread_args));
ACE_TRACE ("ACE_Thread_Manager::spawn_i");
ACE_hthread_t thr_handle;
ACE_thread_t thr_id;
if (t_id == 0)
t_id = &thr_id;
// Acquire the <sync_> lock to block the spawned thread from
// removing this Thread Descriptor before it gets put into our
// thread table.
new_thr_desc->sync_->acquire ();
int const result = ACE_Thread::spawn (func,
args,
flags,
t_id,
&thr_handle,
priority,
stack,
stack_size,
thread_args,
thr_name);
if (result != 0)
{
// _Don't_ clobber errno here! result is either 0 or -1, and
// ACE_OS::thr_create () already set errno! D. Levine 28 Mar 1997
// errno = result;
ACE_Errno_Guard guard (errno); // Lock release may smash errno
new_thr_desc->sync_->release ();
return -1;
}
auto_thread_args.release ();
#if defined (ACE_HAS_WTHREADS)
// Have to duplicate handle if client asks for it.
// @@ How are thread handles implemented on AIX? Do they
// also need to be duplicated?
if (t_handle != 0)
# if defined (ACE_LACKS_DUPLICATEHANDLE)
*t_handle = thr_handle;
# else /* ! ACE_LACKS_DUP */
(void) ::DuplicateHandle (::GetCurrentProcess (),
thr_handle,
::GetCurrentProcess (),
t_handle,
0,
TRUE,
DUPLICATE_SAME_ACCESS);
# endif /* ! ACE_LACKS_DUP */
#else /* ! ACE_HAS_WTHREADS */
if (t_handle != 0)
*t_handle = thr_handle;
#endif /* ! ACE_HAS_WTHREADS */
// append_thr also put the <new_thr_desc> into Thread_Manager's
// double-linked list. Only after this point, can we manipulate
// double-linked list from a spawned thread's context.
return this->append_thr (*t_id,
thr_handle,
ACE_THR_SPAWNED,
grp_id,
task,
flags,
new_thr_desc.release ());
}
int
ACE_Thread_Manager::spawn (ACE_THR_FUNC func,
void *args,
long flags,
ACE_thread_t *t_id,
ACE_hthread_t *t_handle,
long priority,
int grp_id,
void *stack,
size_t stack_size,
const char** thr_name)
{
ACE_TRACE ("ACE_Thread_Manager::spawn");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
if (grp_id == -1)
grp_id = this->grp_id_++; // Increment the group id.
if (priority != ACE_DEFAULT_THREAD_PRIORITY)
ACE_CLR_BITS (flags, THR_INHERIT_SCHED);
if (this->spawn_i (func,
args,
flags,
t_id,
t_handle,
priority,
grp_id,
stack,
stack_size,
0,
thr_name) == -1)
return -1;
return grp_id;
}
// Create N new threads running FUNC.
int
ACE_Thread_Manager::spawn_n (size_t n,
ACE_THR_FUNC func,
void *args,
long flags,
long priority,
int grp_id,
ACE_Task_Base *task,
ACE_hthread_t thread_handles[],
void *stack[],
size_t stack_size[],
const char* thr_name[])
{
ACE_TRACE ("ACE_Thread_Manager::spawn_n");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
if (grp_id == -1)
grp_id = this->grp_id_++; // Increment the group id.
for (size_t i = 0; i < n; i++)
{
// @@ What should happen if this fails?! e.g., should we try to
// cancel the other threads that we've already spawned or what?
if (this->spawn_i (func,
args,
flags,
0,
thread_handles == 0 ? 0 : &thread_handles[i],
priority,
grp_id,
stack == 0 ? 0 : stack[i],
stack_size == 0 ? ACE_DEFAULT_THREAD_STACKSIZE : stack_size[i],
task,
thr_name == 0 ? 0 : &thr_name [i]) == -1)
return -1;
}
return grp_id;
}
// Create N new threads running FUNC.
int
ACE_Thread_Manager::spawn_n (ACE_thread_t thread_ids[],
size_t n,
ACE_THR_FUNC func,
void *args,
long flags,
long priority,
int grp_id,
void *stack[],
size_t stack_size[],
ACE_hthread_t thread_handles[],
ACE_Task_Base *task,
const char* thr_name[])
{
ACE_TRACE ("ACE_Thread_Manager::spawn_n");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
if (grp_id == -1)
grp_id = this->grp_id_++; // Increment the group id.
for (size_t i = 0; i < n; i++)
{
// @@ What should happen if this fails?! e.g., should we try to
// cancel the other threads that we've already spawned or what?
if (this->spawn_i (func,
args,
flags,
thread_ids == 0 ? 0 : &thread_ids[i],
thread_handles == 0 ? 0 : &thread_handles[i],
priority,
grp_id,
stack == 0 ? 0 : stack[i],
stack_size == 0 ? ACE_DEFAULT_THREAD_STACKSIZE : stack_size[i],
task,
thr_name == 0 ? 0 : &thr_name [i]) == -1)
return -1;
}
return grp_id;
}
// Append a thread into the pool (does not check for duplicates).
// Must be called with locks held.
int
ACE_Thread_Manager::append_thr (ACE_thread_t t_id,
ACE_hthread_t t_handle,
ACE_UINT32 thr_state,
int grp_id,
ACE_Task_Base *task,
long flags,
ACE_Thread_Descriptor *td)
{
ACE_TRACE ("ACE_Thread_Manager::append_thr");
ACE_Thread_Descriptor *thr_desc = 0;
if (td == 0)
{
ACE_NEW_RETURN (thr_desc,
ACE_Thread_Descriptor,
-1);
thr_desc->tm_ = this;
// Setup the Thread_Manager.
}
else
thr_desc = td;
thr_desc->thr_id_ = t_id;
thr_desc->thr_handle_ = t_handle;
thr_desc->grp_id_ = grp_id;
thr_desc->task_ = task;
thr_desc->flags_ = flags;
this->thr_list_.insert_head (thr_desc);
ACE_SET_BITS (thr_desc->thr_state_, thr_state);
thr_desc->sync_->release ();
return 0;
}
// Return the thread descriptor (indexed by ACE_hthread_t).
ACE_Thread_Descriptor *
ACE_Thread_Manager::find_hthread (ACE_hthread_t h_id)
{
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
if (ACE_OS::thr_cmp (iter.next ()->thr_handle_, h_id))
{
return iter.next ();
}
}
return 0;
}
// Locate the index in the table associated with <t_id>. Must be
// called with the lock held.
ACE_Thread_Descriptor *
ACE_Thread_Manager::find_thread (ACE_thread_t t_id)
{
ACE_TRACE ("ACE_Thread_Manager::find_thread");
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
if (ACE_OS::thr_equal (iter.next ()->thr_id_, t_id))
{
return iter.next ();
}
}
return 0;
}
// Insert a thread into the pool (checks for duplicates and doesn't
// allow them to be inserted twice).
int
ACE_Thread_Manager::insert_thr (ACE_thread_t t_id,
ACE_hthread_t t_handle,
int grp_id,
long flags)
{
ACE_TRACE ("ACE_Thread_Manager::insert_thr");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
// Check for duplicates and bail out if we're already registered...
if (this->find_thread (t_id) != 0 )
return -1;
if (grp_id == -1)
grp_id = this->grp_id_++;
if (this->append_thr (t_id,
t_handle,
ACE_THR_SPAWNED,
grp_id,
0,
flags) == -1)
return -1;
return grp_id;
}
// Run the registered hooks when the thread exits.
void
ACE_Thread_Manager::run_thread_exit_hooks (int i)
{
#if 0 // currently unused!
ACE_TRACE ("ACE_Thread_Manager::run_thread_exit_hooks");
// @@ Currently, we have just one hook. This should clearly be
// generalized to support an arbitrary number of hooks.
ACE_Thread_Descriptor *td = this->thread_desc_self ();
for (ACE_Cleanup_Info_Node *iter = td->cleanup_info_->pop_front ();
iter != 0;
iter = cleanup_info_->pop_front ())
{
if (iter->cleanup_hook () != 0)
{
(*iter->cleanup_hook ()) (iter->object (), iter->param ());
}
delete iter;
}
ACE_UNUSED_ARG (i);
#else
ACE_UNUSED_ARG (i);
#endif /* 0 */
}
// Remove a thread from the pool. Must be called with locks held.
void
ACE_Thread_Manager::remove_thr (ACE_Thread_Descriptor *td,
int close_handler)
{
ACE_TRACE ("ACE_Thread_Manager::remove_thr");
td->tm_ = 0;
this->thr_list_.remove (td);
#if defined (ACE_WIN32)
if (close_handler != 0)
::CloseHandle (td->thr_handle_);
#else
ACE_UNUSED_ARG (close_handler);
#endif /* ACE_WIN32 */
this->thread_desc_freelist_.add (td);
#if defined (ACE_HAS_THREADS)
// Tell all waiters when there are no more threads left in the pool.
if (this->thr_list_.size () == 0)
this->zero_cond_.broadcast ();
#endif /* ACE_HAS_THREADS */
}
// Repeatedly call remove_thr on all table entries until there
// is no thread left. Must be called with lock held.
void
ACE_Thread_Manager::remove_thr_all (void)
{
ACE_Thread_Descriptor *td = 0;
while ((td = this->thr_list_.delete_head ()) != 0)
{
this->remove_thr (td, 1);
}
}
// ------------------------------------------------------------------
// Factor out some common behavior to simplify the following methods.
#define ACE_THR_OP(OP,STATE) \
int result = OP (td->thr_handle_); \
if (result == -1) { \
if (errno != ENOTSUP) \
this->thr_to_be_removed_.enqueue_tail (td); \
return -1; \
} \
else { \
ACE_SET_BITS (td->thr_state_, STATE); \
return 0; \
}
int
ACE_Thread_Manager::join_thr (ACE_Thread_Descriptor *td, int)
{
ACE_TRACE ("ACE_Thread_Manager::join_thr");
int const result = ACE_Thread::join (td->thr_handle_);
if (result != 0)
{
// Since the thread are being joined, we should
// let it remove itself from the list.
// this->remove_thr (td);
errno = result;
return -1;
}
return 0;
}
int
ACE_Thread_Manager::suspend_thr (ACE_Thread_Descriptor *td, int)
{
ACE_TRACE ("ACE_Thread_Manager::suspend_thr");
int const result = ACE_Thread::suspend (td->thr_handle_);
if (result == -1) {
if (errno != ENOTSUP)
this->thr_to_be_removed_.enqueue_tail (td);
return -1;
}
else {
ACE_SET_BITS (td->thr_state_, ACE_THR_SUSPENDED);
return 0;
}
}
int
ACE_Thread_Manager::resume_thr (ACE_Thread_Descriptor *td, int)
{
ACE_TRACE ("ACE_Thread_Manager::resume_thr");
int const result = ACE_Thread::resume (td->thr_handle_);
if (result == -1) {
if (errno != ENOTSUP)
this->thr_to_be_removed_.enqueue_tail (td);
return -1;
}
else {
ACE_CLR_BITS (td->thr_state_, ACE_THR_SUSPENDED);
return 0;
}
}
int
ACE_Thread_Manager::cancel_thr (ACE_Thread_Descriptor *td, int async_cancel)
{
ACE_TRACE ("ACE_Thread_Manager::cancel_thr");
// Must set the state first and then try to cancel the thread.
ACE_SET_BITS (td->thr_state_, ACE_THR_CANCELLED);
if (async_cancel != 0)
// Note that this call only does something relevant if the OS
// platform supports asynchronous thread cancellation. Otherwise,
// it's a no-op.
return ACE_Thread::cancel (td->thr_id_);
return 0;
}
int
ACE_Thread_Manager::kill_thr (ACE_Thread_Descriptor *td, int signum)
{
ACE_TRACE ("ACE_Thread_Manager::kill_thr");
ACE_thread_t tid = td->thr_id_;
int const result = ACE_Thread::kill (tid, signum);
if (result != 0)
{
// Only remove a thread from us when there is a "real" error.
if (errno != ENOTSUP)
this->thr_to_be_removed_.enqueue_tail (td);
return -1;
}
return 0;
}
// ------------------------------------------------------------------
// Factor out some common behavior to simplify the following methods.
#define ACE_EXECUTE_OP(OP, ARG) \
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1)); \
ACE_ASSERT (this->thr_to_be_removed_.is_empty ()); \
ACE_FIND (this->find_thread (t_id), ptr); \
if (ptr == 0) \
{ \
errno = ENOENT; \
return -1; \
} \
int const result = OP (ptr, ARG); \
ACE_Errno_Guard error (errno); \
while (! this->thr_to_be_removed_.is_empty ()) { \
ACE_Thread_Descriptor * td = 0; \
this->thr_to_be_removed_.dequeue_head (td); \
this->remove_thr (td, 1); \
} \
return result
// Suspend a single thread.
int
ACE_Thread_Manager::suspend (ACE_thread_t t_id)
{
ACE_TRACE ("ACE_Thread_Manager::suspend");
ACE_EXECUTE_OP (this->suspend_thr, 0);
}
// Resume a single thread.
int
ACE_Thread_Manager::resume (ACE_thread_t t_id)
{
ACE_TRACE ("ACE_Thread_Manager::resume");
ACE_EXECUTE_OP (this->resume_thr, 0);
}
// Cancel a single thread.
int
ACE_Thread_Manager::cancel (ACE_thread_t t_id, int async_cancel)
{
ACE_TRACE ("ACE_Thread_Manager::cancel");
ACE_EXECUTE_OP (this->cancel_thr, async_cancel);
}
// Send a signal to a single thread.
int
ACE_Thread_Manager::kill (ACE_thread_t t_id, int signum)
{
ACE_TRACE ("ACE_Thread_Manager::kill");
ACE_EXECUTE_OP (this->kill_thr, signum);
}
int
ACE_Thread_Manager::check_state (ACE_UINT32 state,
ACE_thread_t id,
int enable)
{
ACE_TRACE ("ACE_Thread_Manager::check_state");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
ACE_UINT32 thr_state;
int self_check = ACE_OS::thr_equal (id, ACE_OS::thr_self ());
// If we're checking the state of our thread, try to get the cached
// value out of TSS to avoid lookup.
if (self_check)
{
ACE_Thread_Descriptor *desc = ACE_LOG_MSG->thr_desc ();
if (desc == 0)
return 0; // Always return false.
thr_state = desc->thr_state_;
}
else
{
// Not calling from self, have to look it up from the list.
ACE_FIND (this->find_thread (id), ptr);
if (ptr == 0)
return 0;
thr_state = ptr->thr_state_;
}
if (enable)
return ACE_BIT_ENABLED (thr_state, state);
return ACE_BIT_DISABLED (thr_state, state);
}
// Test if a single thread has terminated.
int
ACE_Thread_Manager::testterminate (ACE_thread_t t_id)
{
ACE_TRACE ("ACE_Thread_Manager::testterminate");
return this->check_state (ACE_THR_TERMINATED, t_id);
}
// Test if a single thread is suspended.
int
ACE_Thread_Manager::testsuspend (ACE_thread_t t_id)
{
ACE_TRACE ("ACE_Thread_Manager::testsuspend");
return this->check_state (ACE_THR_SUSPENDED, t_id);
}
// Test if a single thread is active (i.e., resumed).
int
ACE_Thread_Manager::testresume (ACE_thread_t t_id)
{
ACE_TRACE ("ACE_Thread_Manager::testresume");
return this->check_state (ACE_THR_SUSPENDED, t_id, 0);
}
// Test if a single thread is cancelled.
int
ACE_Thread_Manager::testcancel (ACE_thread_t t_id)
{
ACE_TRACE ("ACE_Thread_Manager::testcancel");
return this->check_state (ACE_THR_CANCELLED, t_id);
}
// Thread information query functions.
int
ACE_Thread_Manager::hthread_within (ACE_hthread_t handle)
{
ACE_TRACE ("ACE_Thread_Manager::hthread_within");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_monx, this->lock_, -1));
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
if (ACE_OS::thr_cmp(iter.next ()->thr_handle_, handle))
{
return 1;
}
}
return 0;
}
int
ACE_Thread_Manager::thread_within (ACE_thread_t tid)
{
ACE_TRACE ("ACE_Thread_Manager::thread_within");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_monx, this->lock_, -1));
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
if (ACE_OS::thr_equal (iter.next ()->thr_id_, tid))
{
return 1;
}
}
return 0;
}
// Get group ids for a particular thread id.
int
ACE_Thread_Manager::get_grp (ACE_thread_t t_id, int &grp_id)
{
ACE_TRACE ("ACE_Thread_Manager::get_grp");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
ACE_FIND (this->find_thread (t_id), ptr);
if (ptr)
grp_id = ptr->grp_id_;
else
return -1;
return 0;
}
// Set group ids for a particular thread id.
int
ACE_Thread_Manager::set_grp (ACE_thread_t t_id, int grp_id)
{
ACE_TRACE ("ACE_Thread_Manager::set_grp");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
ACE_FIND (this->find_thread (t_id), ptr);
if (ptr)
ptr->grp_id_ = grp_id;
else
return -1;
return 0;
}
// Suspend a group of threads.
int
ACE_Thread_Manager::apply_grp (int grp_id,
ACE_THR_MEMBER_FUNC func,
int arg)
{
ACE_TRACE ("ACE_Thread_Manager::apply_grp");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_monx, this->lock_, -1));
ACE_ASSERT (this->thr_to_be_removed_.is_empty ());
int result = 0;
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
if (iter.next ()->grp_id_ == grp_id)
{
if ((this->*func) (iter.next (), arg) == -1)
{
result = -1;
}
}
}
// Must remove threads after we have traversed the thr_list_ to
// prevent clobber thr_list_'s integrity.
if (! this->thr_to_be_removed_.is_empty ())
{
// Save/restore errno.
ACE_Errno_Guard error (errno);
for (ACE_Thread_Descriptor *td;
this->thr_to_be_removed_.dequeue_head (td) != -1;
)
this->remove_thr (td, 1);
}
return result;
}
int
ACE_Thread_Manager::suspend_grp (int grp_id)
{
ACE_TRACE ("ACE_Thread_Manager::suspend_grp");
return this->apply_grp (grp_id,
ACE_THR_MEMBER_FUNC (&ACE_Thread_Manager::suspend_thr));
}
// Resume a group of threads.
int
ACE_Thread_Manager::resume_grp (int grp_id)
{
ACE_TRACE ("ACE_Thread_Manager::resume_grp");
return this->apply_grp (grp_id,
ACE_THR_MEMBER_FUNC (&ACE_Thread_Manager::resume_thr));
}
// Kill a group of threads.
int
ACE_Thread_Manager::kill_grp (int grp_id, int signum)
{
ACE_TRACE ("ACE_Thread_Manager::kill_grp");
return this->apply_grp (grp_id,
ACE_THR_MEMBER_FUNC (&ACE_Thread_Manager::kill_thr), signum);
}
// Cancel a group of threads.
int
ACE_Thread_Manager::cancel_grp (int grp_id, int async_cancel)
{
ACE_TRACE ("ACE_Thread_Manager::cancel_grp");
return this->apply_grp (grp_id,
ACE_THR_MEMBER_FUNC (&ACE_Thread_Manager::cancel_thr),
async_cancel);
}
int
ACE_Thread_Manager::apply_all (ACE_THR_MEMBER_FUNC func, int arg)
{
ACE_TRACE ("ACE_Thread_Manager::apply_all");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
ACE_ASSERT (this->thr_to_be_removed_.is_empty ());
int result = 0;
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
if ((this->*func)(iter.next (), arg) == -1)
{
result = -1;
}
}
// Must remove threads after we have traversed the thr_list_ to
// prevent clobber thr_list_'s integrity.
if (! this->thr_to_be_removed_.is_empty ())
{
// Save/restore errno.
ACE_Errno_Guard error (errno);
for (ACE_Thread_Descriptor *td;
this->thr_to_be_removed_.dequeue_head (td) != -1;
)
this->remove_thr (td, 1);
}
return result;
}
// Resume all threads that are suspended.
int
ACE_Thread_Manager::resume_all (void)
{
ACE_TRACE ("ACE_Thread_Manager::resume_all");
return this->apply_all (ACE_THR_MEMBER_FUNC (&ACE_Thread_Manager::resume_thr));
}
int
ACE_Thread_Manager::suspend_all (void)
{
ACE_TRACE ("ACE_Thread_Manager::suspend_all");
return this->apply_all (ACE_THR_MEMBER_FUNC (&ACE_Thread_Manager::suspend_thr));
}
int
ACE_Thread_Manager::kill_all (int sig)
{
ACE_TRACE ("ACE_Thread_Manager::kill_all");
return this->apply_all (&ACE_Thread_Manager::kill_thr, sig);
}
int
ACE_Thread_Manager::cancel_all (int async_cancel)
{
ACE_TRACE ("ACE_Thread_Manager::cancel_all");
return this->apply_all (ACE_THR_MEMBER_FUNC (&ACE_Thread_Manager::cancel_thr),
async_cancel);
}
int
ACE_Thread_Manager::join (ACE_thread_t tid, ACE_THR_FUNC_RETURN *status)
{
ACE_TRACE ("ACE_Thread_Manager::join");
bool found = false;
ACE_Thread_Descriptor_Base tdb;
{
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
#if !defined (ACE_HAS_VXTHREADS)
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor_Base> biter (this->terminated_thr_list_);
!biter.done ();
biter.advance ())
{
if (ACE_OS::thr_equal (biter.next ()->thr_id_, tid))
{
ACE_Thread_Descriptor_Base *tdbl = biter.advance_and_remove (false);
if (ACE_Thread::join (tdbl->thr_handle_, status) == -1)
{
return -1;
}
delete tdbl;
// return immediately if we've found the thread we want to join.
return 0;
}
}
#endif /* !ACE_HAS_VXTHREADS */
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
// If threads are created as THR_DETACHED or THR_DAEMON, we
// can't help much.
if (ACE_OS::thr_equal (iter.next ()->thr_id_,tid) &&
(ACE_BIT_DISABLED (iter.next ()->flags_, THR_DETACHED | THR_DAEMON)
|| ACE_BIT_ENABLED (iter.next ()->flags_, THR_JOINABLE)))
{
tdb = *iter.next ();
ACE_SET_BITS (iter.next ()->thr_state_, ACE_THR_JOINING);
found = 1;
break;
}
}
if (!found)
return -1;
// Didn't find the thread we want or the thread is not joinable.
}
if (ACE_Thread::join (tdb.thr_handle_, status) == -1)
return -1;
return 0;
}
// Wait for group of threads
int
ACE_Thread_Manager::wait_grp (int grp_id)
{
ACE_TRACE ("ACE_Thread_Manager::wait_grp");
int copy_count = 0;
ACE_Thread_Descriptor_Base *copy_table = 0;
// We have to make sure that while we wait for these threads to
// exit, we do not have the lock. Therefore we make a copy of all
// interesting entries and let go of the lock.
{
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
#if !defined (ACE_HAS_VXTHREADS)
ACE_NEW_RETURN (copy_table,
ACE_Thread_Descriptor_Base [this->thr_list_.size ()
+ this->terminated_thr_list_.size ()],
-1);
#else
ACE_NEW_RETURN (copy_table,
ACE_Thread_Descriptor_Base [this->thr_list_.size ()],
-1);
#endif /* !ACE_HAS_VXTHREADS */
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
// If threads are created as THR_DETACHED or THR_DAEMON, we
// can't help much.
if (iter.next ()->grp_id_ == grp_id &&
(ACE_BIT_DISABLED (iter.next ()->flags_, THR_DETACHED | THR_DAEMON)
|| ACE_BIT_ENABLED (iter.next ()->flags_, THR_JOINABLE)))
{
ACE_SET_BITS (iter.next ()->thr_state_, ACE_THR_JOINING);
copy_table[copy_count++] = *iter.next ();
}
}
#if !defined (ACE_HAS_VXTHREADS)
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor_Base> biter (this->terminated_thr_list_);
!biter.done ();
biter.advance ())
{
// If threads are created as THR_DETACHED or THR_DAEMON, we
// can't help much.
if (biter.next ()->grp_id_ == grp_id)
{
ACE_Thread_Descriptor_Base *tdb = biter.advance_and_remove (false);
copy_table[copy_count++] = *tdb;
delete tdb;
}
}
#endif /* !ACE_HAS_VXTHREADS */
}
// Now actually join() with all the threads in this group.
int result = 0;
for (int i = 0;
i < copy_count && result != -1;
i++)
{
if (ACE_Thread::join (copy_table[i].thr_handle_) == -1)
result = -1;
}
delete [] copy_table;
return result;
}
// Must be called when thread goes out of scope to clean up its table
// slot.
ACE_THR_FUNC_RETURN
ACE_Thread_Manager::exit (ACE_THR_FUNC_RETURN status, bool do_thread_exit)
{
ACE_TRACE ("ACE_Thread_Manager::exit");
#if defined (ACE_WIN32)
// Remove detached thread handle.
if (do_thread_exit)
{
#if 0
// @@ This callback is now taken care of by TSS_Cleanup. Do we
// need it anymore?
// On Win32, if we really wants to exit from a thread, we must
// first clean up the thread specific storage. By doing so,
// ACE_Thread_Manager::exit will be called again with
// do_thr_exit = 0 and cleaning up the ACE_Cleanup_Info (but not
// exiting the thread.) After the following call returns, we
// are safe to exit this thread.
delete ACE_Thread_Exit::instance ();
#endif /* 0 */
ACE_Thread::exit (status);
}
#endif /* ACE_WIN32 */
// Just hold onto the guard while finding this thread's id and
{
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, 0));
// Find the thread id, but don't use the cache. It might have been
// deleted already.
ACE_thread_t const id = ACE_OS::thr_self ();
ACE_Thread_Descriptor* td = this->find_thread (id);
if (td != 0)
{
// @@ We call Thread_Descriptor terminate this realize the cleanup
// process itself.
td->terminate();
}
}
if (do_thread_exit)
{
ACE_Thread::exit (status);
// On reasonable systems <ACE_Thread::exit> should not return.
// However, due to horrible semantics with Win32 thread-specific
// storage this call can return (don't ask...).
}
return 0;
}
// Wait for all the threads to exit.
int
ACE_Thread_Manager::wait (const ACE_Time_Value *timeout,
bool abandon_detached_threads,
bool use_absolute_time)
{
ACE_TRACE ("ACE_Thread_Manager::wait");
ACE_Auto_Ptr<ACE_Time_Value> local_timeout;
// Check to see if we're using absolute time or not.
if (use_absolute_time == false && timeout != 0)
{
// create time value duplicate (preserves time policy)
local_timeout.reset (timeout->duplicate ());
// convert time value to absolute time
(*local_timeout) = local_timeout->to_absolute_time ();
// replace original time by abs time duplicate
timeout = local_timeout.get ();
}
#if !defined (ACE_HAS_VXTHREADS)
ACE_Double_Linked_List<ACE_Thread_Descriptor_Base> term_thr_list_copy;
#endif /* ACE_HAS_VXTHREADS */
#if defined (ACE_HAS_THREADS)
{
// Just hold onto the guard while waiting.
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
if (ACE_Object_Manager::shutting_down () != 1)
{
// Program is not shutting down. Perform a normal wait on threads.
if (abandon_detached_threads != 0)
{
ACE_ASSERT (this->thr_to_be_removed_.is_empty ());
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor>
iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
if (ACE_BIT_ENABLED (iter.next ()->flags_,
THR_DETACHED | THR_DAEMON)
&& ACE_BIT_DISABLED (iter.next ()->flags_, THR_JOINABLE))
{
this->thr_to_be_removed_.enqueue_tail (iter.next ());
ACE_SET_BITS (iter.next ()->thr_state_, ACE_THR_JOINING);
}
}
if (! this->thr_to_be_removed_.is_empty ())
{
ACE_Thread_Descriptor *td = 0;
while (this->thr_to_be_removed_.dequeue_head (td) != -1)
this->remove_thr (td, 1);
}
}
while (this->thr_list_.size () > 0)
if (this->zero_cond_.wait (timeout) == -1)
return -1;
}
else
// Program is shutting down, no chance to wait on threads.
// Therefore, we'll just remove threads from the list.
this->remove_thr_all ();
#if !defined (ACE_HAS_VXTHREADS)
ACE_Thread_Descriptor_Base* item = 0;
while ((item = this->terminated_thr_list_.delete_head ()) != 0)
{
term_thr_list_copy.insert_tail (item);
}
#endif /* ACE_HAS_VXTHREADS */
// Release the guard, giving other threads a chance to run.
}
#if !defined (ACE_HAS_VXTHREADS)
// @@ VxWorks doesn't support thr_join (yet.) We are working
// on our implementation. Chorus'es thr_join seems broken.
ACE_Thread_Descriptor_Base *item = 0;
while ((item = term_thr_list_copy.delete_head ()) != 0)
{
if (ACE_BIT_DISABLED (item->flags_, THR_DETACHED | THR_DAEMON)
|| ACE_BIT_ENABLED (item->flags_, THR_JOINABLE))
// Detached handles shouldn't reached here.
(void) ACE_Thread::join (item->thr_handle_);
delete item;
}
#endif /* !ACE_HAS_VXTHREADS */
#else
ACE_UNUSED_ARG (timeout);
ACE_UNUSED_ARG (abandon_detached_threads);
#endif /* ACE_HAS_THREADS */
return 0;
}
int
ACE_Thread_Manager::apply_task (ACE_Task_Base *task,
ACE_THR_MEMBER_FUNC func,
int arg)
{
ACE_TRACE ("ACE_Thread_Manager::apply_task");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
ACE_ASSERT (this->thr_to_be_removed_.is_empty ());
int result = 0;
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
if (iter.next ()->task_ == task
&& (this->*func) (iter.next (), arg) == -1)
result = -1;
// Must remove threads after we have traversed the thr_list_ to
// prevent clobber thr_list_'s integrity.
if (! this->thr_to_be_removed_.is_empty ())
{
// Save/restore errno.
ACE_Errno_Guard error (errno);
for (ACE_Thread_Descriptor *td = 0;
this->thr_to_be_removed_.dequeue_head (td) != -1;
)
this->remove_thr (td, 1);
}
return result;
}
// Wait for all threads to exit a task.
int
ACE_Thread_Manager::wait_task (ACE_Task_Base *task)
{
int copy_count = 0;
ACE_Thread_Descriptor_Base *copy_table = 0;
// We have to make sure that while we wait for these threads to
// exit, we do not have the lock. Therefore we make a copy of all
// interesting entries and let go of the lock.
{
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
#if !defined (ACE_HAS_VXTHREADS)
ACE_NEW_RETURN (copy_table,
ACE_Thread_Descriptor_Base [this->thr_list_.size ()
+ this->terminated_thr_list_.size ()],
-1);
#else
ACE_NEW_RETURN (copy_table,
ACE_Thread_Descriptor_Base [this->thr_list_.size ()],
-1);
#endif /* !ACE_HAS_VXTHREADS */
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
// If threads are created as THR_DETACHED or THR_DAEMON, we
// can't wait on them here.
if (iter.next ()->task_ == task &&
(ACE_BIT_DISABLED (iter.next ()->flags_,
THR_DETACHED | THR_DAEMON)
|| ACE_BIT_ENABLED (iter.next ()->flags_,
THR_JOINABLE)))
{
ACE_SET_BITS (iter.next ()->thr_state_,
ACE_THR_JOINING);
copy_table[copy_count++] = *iter.next ();
}
}
#if !defined (ACE_HAS_VXTHREADS)
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor_Base> titer (this->terminated_thr_list_);
!titer.done ();
titer.advance ())
{
// If threads are created as THR_DETACHED or THR_DAEMON, we can't help much here.
if (titer.next ()->task_ == task)
{
ACE_Thread_Descriptor_Base *tdb = titer.advance_and_remove (false);
copy_table[copy_count++] = *tdb;
delete tdb;
}
}
#endif /* !ACE_HAS_VXTHREADS */
}
// Now to do the actual work
int result = 0;
for (int i = 0;
i < copy_count && result != -1;
i++)
{
if (ACE_Thread::join (copy_table[i].thr_handle_) == -1)
result = -1;
}
delete [] copy_table;
return result;
}
// Suspend a task
int
ACE_Thread_Manager::suspend_task (ACE_Task_Base *task)
{
ACE_TRACE ("ACE_Thread_Manager::suspend_task");
return this->apply_task (task,
ACE_THR_MEMBER_FUNC (&ACE_Thread_Manager::suspend_thr));
}
// Resume a task.
int
ACE_Thread_Manager::resume_task (ACE_Task_Base *task)
{
ACE_TRACE ("ACE_Thread_Manager::resume_task");
return this->apply_task (task,
ACE_THR_MEMBER_FUNC (&ACE_Thread_Manager::resume_thr));
}
// Kill a task.
int
ACE_Thread_Manager::kill_task (ACE_Task_Base *task, int /* signum */)
{
ACE_TRACE ("ACE_Thread_Manager::kill_task");
return this->apply_task (task,
ACE_THR_MEMBER_FUNC (&ACE_Thread_Manager::kill_thr));
}
// Cancel a task.
int
ACE_Thread_Manager::cancel_task (ACE_Task_Base *task,
int async_cancel)
{
ACE_TRACE ("ACE_Thread_Manager::cancel_task");
return this->apply_task (task,
ACE_THR_MEMBER_FUNC (&ACE_Thread_Manager::cancel_thr),
async_cancel);
}
// Locate the index in the table associated with <task> from the
// beginning of the table up to an index. Must be called with the
// lock held.
ACE_Thread_Descriptor *
ACE_Thread_Manager::find_task (ACE_Task_Base *task, size_t slot)
{
ACE_TRACE ("ACE_Thread_Manager::find_task");
size_t i = 0;
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
if (i >= slot)
break;
if (task == iter.next ()->task_)
return iter.next ();
++i;
}
return 0;
}
// Returns the number of ACE_Task in a group.
int
ACE_Thread_Manager::num_tasks_in_group (int grp_id)
{
ACE_TRACE ("ACE_Thread_Manager::num_tasks_in_group");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
int tasks_count = 0;
size_t i = 0;
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
if (iter.next ()->grp_id_ == grp_id
&& this->find_task (iter.next ()->task_, i) == 0
&& iter.next ()->task_ != 0)
{
++tasks_count;
}
++i;
}
return tasks_count;
}
// Returns the number of threads in an ACE_Task.
int
ACE_Thread_Manager::num_threads_in_task (ACE_Task_Base *task)
{
ACE_TRACE ("ACE_Thread_Manager::num_threads_in_task");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
int threads_count = 0;
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
if (iter.next ()->task_ == task)
{
++threads_count;
}
}
return threads_count;
}
// Returns in task_list a list of ACE_Tasks registered with ACE_Thread_Manager.
ssize_t
ACE_Thread_Manager::task_all_list (ACE_Task_Base *task_list[],
size_t n)
{
ACE_TRACE ("ACE_Thread_Manager::task_all_list");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
size_t task_list_count = 0;
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
if (task_list_count >= n)
{
break;
}
ACE_Task_Base *task_p = iter.next ()->task_;
if (0 != task_p)
{
// This thread has a task pointer; see if it's already in the
// list. Don't add duplicates.
size_t i = 0;
for (; i < task_list_count; ++i)
{
if (task_list[i] == task_p)
{
break;
}
}
if (i == task_list_count) // No match - add this one
{
task_list[task_list_count++] = task_p;
}
}
}
return ACE_Utils::truncate_cast<ssize_t> (task_list_count);
}
// Returns in thread_list a list of all thread ids
ssize_t
ACE_Thread_Manager::thread_all_list (ACE_thread_t thread_list[],
size_t n)
{
ACE_TRACE ("ACE_Thread_Manager::thread_all_list");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
size_t thread_count = 0;
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
if (thread_count >= n)
{
break;
}
thread_list[thread_count] = iter.next ()->thr_id_;
++thread_count;
}
return ACE_Utils::truncate_cast<ssize_t> (thread_count);
}
int
ACE_Thread_Manager::thr_state (ACE_thread_t id,
ACE_UINT32& state)
{
ACE_TRACE ("ACE_Thread_Manager::thr_state");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
int const self_check = ACE_OS::thr_equal (id, ACE_OS::thr_self ());
// If we're checking the state of our thread, try to get the cached
// value out of TSS to avoid lookup.
if (self_check)
{
ACE_Thread_Descriptor *desc = ACE_LOG_MSG->thr_desc ();
if (desc == 0)
{
return 0; // Always return false.
}
state = desc->thr_state_;
}
else
{
// Not calling from self, have to look it up from the list.
ACE_FIND (this->find_thread (id), ptr);
if (ptr == 0)
{
return 0;
}
state = ptr->thr_state_;
}
return 1;
}
// Returns in task_list a list of ACE_Tasks in a group.
ssize_t
ACE_Thread_Manager::task_list (int grp_id,
ACE_Task_Base *task_list[],
size_t n)
{
ACE_TRACE ("ACE_Thread_Manager::task_list");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
ACE_Task_Base **task_list_iterator = task_list;
size_t task_list_count = 0;
size_t i = 0;
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
if (task_list_count >= n)
{
break;
}
if (iter.next ()->grp_id_ == grp_id
&& this->find_task (iter.next ()->task_, i) == 0)
{
task_list_iterator[task_list_count] = iter.next ()->task_;
++task_list_count;
}
++i;
}
return ACE_Utils::truncate_cast<ssize_t> (task_list_count);
}
// Returns in thread_list a list of thread ids in an ACE_Task.
ssize_t
ACE_Thread_Manager::thread_list (ACE_Task_Base *task,
ACE_thread_t thread_list[],
size_t n)
{
ACE_TRACE ("ACE_Thread_Manager::thread_list");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
size_t thread_count = 0;
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
if (thread_count >= n)
{
break;
}
if (iter.next ()->task_ == task)
{
thread_list[thread_count] = iter.next ()->thr_id_;
++thread_count;
}
}
return ACE_Utils::truncate_cast<ssize_t> (thread_count);
}
// Returns in thread_list a list of thread handles in an ACE_Task.
ssize_t
ACE_Thread_Manager::hthread_list (ACE_Task_Base *task,
ACE_hthread_t hthread_list[],
size_t n)
{
ACE_TRACE ("ACE_Thread_Manager::hthread_list");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
size_t hthread_count = 0;
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
if (hthread_count >= n)
{
break;
}
if (iter.next ()->task_ == task)
{
hthread_list[hthread_count] = iter.next ()->thr_handle_;
++hthread_count;
}
}
return ACE_Utils::truncate_cast<ssize_t> (hthread_count);
}
ssize_t
ACE_Thread_Manager::thread_grp_list (int grp_id,
ACE_thread_t thread_list[],
size_t n)
{
ACE_TRACE ("ACE_Thread_Manager::thread_grp_list");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
size_t thread_count = 0;
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
if (thread_count >= n)
{
break;
}
if (iter.next ()->grp_id_ == grp_id)
{
thread_list[thread_count] = iter.next ()->thr_id_;
thread_count++;
}
}
return ACE_Utils::truncate_cast<ssize_t> (thread_count);
}
// Returns in thread_list a list of thread handles in an ACE_Task.
ssize_t
ACE_Thread_Manager::hthread_grp_list (int grp_id,
ACE_hthread_t hthread_list[],
size_t n)
{
ACE_TRACE ("ACE_Thread_Manager::hthread_grp_list");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
size_t hthread_count = 0;
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
if (hthread_count >= n)
{
break;
}
if (iter.next ()->grp_id_ == grp_id)
{
hthread_list[hthread_count] = iter.next ()->thr_handle_;
hthread_count++;
}
}
return ACE_Utils::truncate_cast<ssize_t> (hthread_count);
}
int
ACE_Thread_Manager::set_grp (ACE_Task_Base *task, int grp_id)
{
ACE_TRACE ("ACE_Thread_Manager::set_grp");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
for (ACE_Double_Linked_List_Iterator<ACE_Thread_Descriptor> iter (this->thr_list_);
!iter.done ();
iter.advance ())
{
if (iter.next ()->task_ == task)
{
iter.next ()->grp_id_ = grp_id;
}
}
return 0;
}
int
ACE_Thread_Manager::get_grp (ACE_Task_Base *task, int &grp_id)
{
ACE_TRACE ("ACE_Thread_Manager::get_grp");
ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->lock_, -1));
ACE_FIND (this->find_task (task), ptr);
grp_id = ptr->grp_id_;
return 0;
}
ACE_END_VERSIONED_NAMESPACE_DECL